2016학년도 난만한+포카칩 오프라인 B형 일부 문항 해설
2016 난만한, 포카칩 수능 직전 모의평가 29,30 해설.pdf
현장 응시자였습니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
새엄마터치가분명함
-
할만한 겜 있나요
-
작년엔 딱 60인가 나왔었는데
-
사수가 아니라 삼수라면 좋을텐데 04가 아니라 05였다면 내가 빠른이었더라면 좋을텐데
-
운동하러가야겠다 0
머리를 좀 깨끗이 비우고 와야지
-
바나나킥 중독자
-
재수(예정각) 06인데 지금 부터 하기엔 너무 빠른가요 국어 수학 조금씩 할라는데...
-
연초록3개 너무 모험인가요 가군에 연고공 진초 /카약 연초 나군에 우석약, 세명한...
-
글씨체 과외는 어디 없나
-
가 어디인가요? ㅠㅠㅠ 이번주가 면접인데 갈지 말지 고민입니다..
-
다들 잘본거같음뇨
-
고해성사 3
중학교2학년때 수능갤러리눈팅이취미
-
현역때 평백 70을 맞고 재수에 돌입했습니다 6,9평과 여러 사설등에서 평백...
-
송도 <<- 어떤가요 12
연대는 1학년은 무조건 송도 & 기숙사 유배라는데 기숙사 100퍼 들여보내주는 거면...
-
지거국 되나요…?ㅠㅠ
-
여캐일러투척 11
빵ㅋㅋ
-
. 0
땅콩크림빵 이거 크림 없애고 땅콩버터만 꾸덕하게 있으면 좋겠네
-
컴업글했다 8
10년전 부품에서 2년전 부품으로!
-
저도 테두리 갖고싶어요... 테두리 없으니까 뭔가 헐벗은 느낌...
-
[CRUX] 화 1 만점 백분위 97? 어쩌라고ㅋㅋ (feat. 대학교 정시 반영 방식에 따른 유/불리) 0
안녕하십니까, 크럭스 컨설턴트 오찬교입니다. 오늘은 정시 입시에서의 과탐 반영 방식...
-
지거국 약대 학점 3.4~3.5 서울대 대학원 갈 수 있을까?
-
생명과학 0
완전 쌩노베이고, 올해 강대 김태영 선생님 들으려고 하는데 혹시 생1 분들 훈수 좀...
-
1번 했는데 정시나 논술에 불이익 있나요? 생기부도 작살낸다는데..
-
첨단학과 신설로 편입 인원 축소했네요 타 대학도 담주 내외로 모집인원 발표할텐데 많이 줄 수도
-
왜안뽑으시는거에요
-
78수 2
날조 없음
-
제 취향인데요 저는 갠적으로 훈수두기 컨텐츠랑 윤도영 선생님께서 나오시는 컨텐츠가...
-
올해 의대생은 그래서 1500명 증원해서 뽑는거죠? 2
그런거죠?
-
벌써 많이한듯
-
운이없다그냥
-
논술도수시입니다!
-
와웅
-
추천좀
-
나 고백할거잇슴 15
나..잇잖아 자퇴할거임
-
고뱃센츄 3
이뿌던데
-
ㄹㅇ..
-
오르비에서 너무 롤롤 그러는 것 같아서 공부얘기하시는데 혼자 겜얘기는 좀 아닌가...
-
군대 ㄱㄱ 나도 생각 비우고 올 예정
-
취미생활로 가능? 대학합격하면
-
강좌수가 많지않아서 끌리네요
-
이번수능 화작 8분컷 95(공통2틀) 했는데 한번 더한다치면 언매로 틀어야함 아니면...
-
한정거장만에 알아서 다행이다...
-
놀기임 일단 논술 가시는분들은 열심히 준비하시고 무휴반인 사람들은 열심히 기말...
-
글 쓰는 이유: 주변에 정시 본 애가 저 혼자입니다. 올해 초엔 생노베 특성화고...
-
아무래도 수험생들은 잘 모를거같아서 ㅇㅇ 잘 고려하시길
-
공군컷볼때마다 4
20살에 공군 바로 박은게 인생 최고의 선택같음요
-
[의대면접 MMI 분석] 연세대 미래캠퍼스 의대 MMI 면접 - 의료 윤리 기출문제 답변 준비방법 0
안녕하세요, 의대 면접 대비 LTP컨설팅 입니다. 오늘은 연세대 미래캠 의대 면접...
-
일단 매주 복권 사야지
-
미적의 신이 되고싶다
-
제 호흡이 널리 퍼지도록
이거 문제는 어디서 받을수있나요.
http://orbi.kr/0006731700
마지막 문제 30번에서
일단 역함수존재이니까 양수는 보장이 되었구(일단 양끝에서 발산하므로)
2012학년도 30번처럼 어떤실수만 만족시키면 되니까 토미님 해설처럼 역함수의 미분은 어떤실수의 역함수의 역수로서 해석할수있게되고
일단 역함수가질조건이 2e보다크다이고
f'(x1)≤1/f'(x2)인 어떤실수이니까 좌변이 클조건은 극소일때 최소이고 우변도 극소일때 최대이니까 그래사 계산해도 무방한거죠?
토미님 해설이랑 일맥상통하는 이야기이긴한데
2개인변수를 1개인 변수로 줄이는게 근거가 잘 와닫지 않아서요
만약 도함수값의 최솟값이 1보다 크다면
모든 실수 x1 x3에 대해 도함수값이 둘 다 1보다 크므로
그 두 값의 곱이 1보다 작을 일은 없습니다
즉, 도함수값의 최솟값이 반드시 1보다 작거나 같아야만 합니다
2012 수능 30번에서의 '어떤' 구절을 처리하는 방법과 비슷한 논리를 사용하였다고 보면 되겠습니다
아 그렇네요
그럼 제 접근방식도 옳다고 할수있는거죠?
넵 맞습니다!!
변수를 1개로 봐도 무방한지에 대한 조건들을 아직 학습한적이 없어서 혼동이 오는데 변환가능한 시점들을 어떤 방식으로 판단하면되나요?
글쎄요... 이런 논리는 아직 유형화되지가 않아서 자신 있게 말씀을 못 드리겠습니다
다만, 식에 대한 적절한 해석을 통해 두개의 변수에 공통으로 성립하는 성질을 찾아내는 것이 바람직한 접근법이라는 정도는 말씀드릴 수 있겠네요
여튼 감사합니다
많이 배워가네요!
확인했어요! 감사함니다
문의하신 부분 보충설명 추가한 수정본으로 해설지 다시 올라갔어요~
좋아요 누르고 갑니다 수능 전과목 만점받으세요!!
감사합니다~ 좋은 결과 들고 다시 만나 뵙고 싶어요!!
~~~^^ 토미님 때문에 이과로 전과하고 싶어지네욧~~!! ^^!! ㅎㅎ
갓토미님이당
다른거는 다 풀기는 했는데 19번 하나가 안 풀리네요 19번 힌트나 해설 부탁드립니다 글고 문제 참 좋아요! 킬러문제들 퀄이 ㄷㄷ하네요
적분구간 평행이동이 힌트입니다
2-sinx와 2+cosx, 0과 pi/6이라는 적분구간에 주목하세요
저는 27번 부탁드려요.. 공도 무능력자긴한데.. 29번은 1분컷이었는데 27번이 공간지각능력이 부족해서 그런가 작도가 힘드네요..
선분BC의 중점을 점M이라 했을때 각AMD가 수직나오는것만 밝히면 문제 금방 풀려요 선분DH가 1이니깐 삼각형 DMH에서 각 DMH가 특수각 30도가 되기때문에 평면 ABC와 평면a와이루는 각도 합이 90도가 되거든요 그 후에 넓이/넓이로 이면각
다 맞게 말씀하셨는데, 이 경우 삼수선의 정리로 깔끔하게 풀립니다
ADH와 AHM이 같은 평면이라는 걸 알아차렸다면 교선, 수선이 바로 보여요