2024학년도 9월 모의평가 수학 손풀이 (공통, 확통, 미적)
2024학년도 9월 모의평가 손풀이_울고있는치타_(공통, 확통, 미적).pdf
다들 9월 모의고사 응시하시느라 수고하셨습니다.
참 오늘도 평가원은 전설을 써나가는 것 같습니다.
난이도는 사람들이 킬러 쉬워보인다고 역대급 쉽다는 얘기가 많은데, 절대 쉽습니다.
손풀이 모음
https://orbi.kr/00063035233 - 2021학년도 3월 학력평가 (2021.03.25. 시행)
https://orbi.kr/00063052332 - 2021학년도 4월 학력평가 (2021.04.14. 시행)
https://orbi.kr/00062957540 - 2022학년도 6월 모의평가 (2021.06.03. 시행)
https://orbi.kr/00062968319 - 2022학년도 9월 모의평가 (2021.09.01. 시행)
https://orbi.kr/00062922276 - 2022학년도 대학수학능력시험 (2021.11.18. 시행)
https://orbi.kr/00063031810 - 2023학년도 6월 모의평가 (2022.06.09. 시행)
https://orbi.kr/00063019030 - 2023학년도 9월 모의평가 (2022.08.31. 시행)
https://orbi.kr/00062878683 - 2023학년도 대학수학능력시험 (2022.11.17. 시행)
https://orbi.kr/00062886228 - 2023학년도 3월 학력평가 (2023.03.23. 시행)
https://orbi.kr/00062938685 - 2023학년도 4월 학력평가 (2023.05.10. 시행)
https://orbi.kr/00063171555 - 2024학년도 6월 모의평가 (2023.06.01. 시행)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
마크도 공부해야 1등급 나오겠네
-
3시자는사람은나약함
-
ㅇㅈ합니다 3
팜하니나 보고 가라
-
할거추천받아요 6
ㅠㅠ
-
알아보는사람이3명이나있네….이상한글은안써서다행이다 휴
-
정시의벽<< 못생긴 거 알고 절대 인증 안 함
-
현우진 시발점 1
20분동안 1번에서 19번까지 15번 빼고 다 풀었는데 시발점 들어야할까요? 예비고3입니다
-
미쳤네 근데 이러면 413~416 다 튀어버리고 꼬리 멸망해서 실지원 후 최종컷은...
-
저번 그 사람 보고나서 절대 못하겟슴 ㅋㅋ
-
대학 2급 오르는정도라는데 진짜에요?
-
수락 안하는게 나음?
-
이즈 굿 4
-
지금 갈 건 아니고 원서영역 정리될 때까지 있을 거긴 해요
-
도리깨 에임 제외하면 에임 필요없는 새끼 궁극기 하나는 개사기인 새끼 쿠키로 살리는...
-
안자는사람더코드림 14
선착순네명
-
선넘질받 15
이러는 글에서 선 넘는 질문 별로 본 적 없음
-
ㅇㅈ재업 18
도파민이 필요해서 마지막으로 트라이 해봅니다
-
저처럼!
-
걍 대성쪽에 새로찍는분들거 들을까요
-
강기분이나 듣고 자야지..
-
10초에 글 1개씩 지워도 하루동안 글을 다 못 지움 13
어이가 없네 그냥 ㅋㅋㅋㅋ
-
리리 같은 똥캐로는 이길 수 없어 ㅠㅠㅠㅠ
-
how
-
꽤 열심히 했는데 아니 3일치도 못지웠다고 아직.. 똥글을 얼마나 싸댄거뇨
-
바둑도 수읽기 싸움 들어가면 재밌는데 포석은 재미없고 체스도 한번 시작해볼까?...
-
넘 좋당
-
잠자기
-
부산은 막 추천이 쏟아졌는데 대전은 성심당 성심당 성심당 일거 같아 뭔가 좀 두렵군요 ㅋㅋㅋ
-
언미물화 질문 받습니다 10
언미물화 질문 받습니다
-
박기호쌤 논술 0
박기호쌤 논술수업 현강 들을까여 아님 대치 다른학원 다닐까여 로고스같은
-
일신우일신 과목 별 기본적인 개념에 대한 이해와 적용을 중점적으 로 서술한...
-
시간 ㅈㄴ 빠르노
-
세번째 자리 0이면 딸피 맞는거 같기도
-
05가 애기취급받던때가있었는데...
-
내 인생의 절반을 줄테니까, 네 인생의 절반을 줘!
-
이유:내가 04라서 03부터는 나도 몰루
-
옛날엔 안 그랬는데 13
요즘 격겜 / 리겜 류가 좋아짐 틀 되어가는 중
-
재밌습니다
-
ㅇㅇ대학교 병원 잇으면 정신병 ON 상태됨... 내가... 20번 안틀렷으면...
-
잔다..
-
리리 니나 샤오유 내 모스트 픽들 예쁘고 쉽?고 재밌음
-
이번에 2
사문 어려웠었어요 ??
-
나만운없네 8
딩선족다쳐내
-
왜 봉선동으로 안옴ㅠㅠ
-
근데 먼가 오랫동안 따뜻한 물에 들어가 있고 싶기도 하고..
-
더 들을거 추천해주세요
-
과제는역시 8
내일하는것
-
오늘의 야식은 5
짜파게티랑 김치 음료수는 콜라
총평도 부탁드림미다
추가하겠습니다...
일단 그냥... 그렇네요.//
이거하느라 바빳구만 ㅊㅊ
미적은 언제 올라오나용??
지금 추가했습니다!!
그저 부럽다... 왜 우리 때는 21 30 몰빵이었을까 차라리 이게 훨씬 변별력있는듯
오히려 그게 나을수도 있습니다.
지금처럼 어디서 어려운 문제가 나올지 딱 보고 판별하고 넘어가는 능력을 요하지는 않았으니까요...
예전 30번 처럼 5%미만의 정답률은 시험으로서 변별력 가치가 없는건 이미 논문에서 검증 끝났는데요...
변별력 말구요 시험보는 학생입장에서요 ㅇㅇ 그만큼 편한건 팩트잖아요 애초에 21 30 맘편하게 버리고 가는 사람도 많았고
아 편하긴 한데 전 좀 억울했어요 ㅠㅠ 50분 남았는데 50분동안 낑낑대고 못풀었거든요 정말 열심히 했는데 결국 30번은 못맞추니 허탈감이 더 컸어요 상대적으로 지금은 열심히 한만큼 보상받는다 봅니다
아 그정도 등급대시면 그렇게 생각하실수도 있을 것 같아요. 시험마다 장단점이 있어서..
이런 시험 형식이면 초코냥냥님 같은 분들은 오히려 좋을 수도 있는데, 한 3등급대부터는 진짜 시험에 풀수있는 문제 찾아다니다가 끝나거든요.
전반적으로 난이도가 있다보니 실력이 애매하면 문제가 다 어려워서요 ㅋㅋㅋㅋ
장단점이 있는것같아요!!
29번 풀이 실.화.냐?
1번보다 풀이가 적은 29번 ㄷㄷ
ㄹㅇㅋㅋ
f'(-a)가 왜 0보다 크거나 같나요? -1일때 0인건 알겟는데...무조건그래야하나요?
중학교 과정입니다!
이차함수의 대칭축에서의 함수값이 0 이상이어야 f(x)가 계속 증가하기 때문에
실근이 존재하지 않는다는 내용을 사용한겁니다
10번에서 f'(-a)를 넣어줄때 왜 양수쪽 식에다 넣어주는건가용????
아 13번이요!
음수쪽 식에서는 -b>0이다를 사용하여 -1에서는 실근을 갖고, 그 외에는 음수범위에서 실근이 생기지 않는다는 조건을 사용한 것이고
양수쪽 식에서는 계속 식이 양수여야하기 때문에, 양수쪽 식에 대입한 겁니다.
f'(x) 식을 관찰해보면 사실 -b만큼 평행이동하고 음수쪽 식과 양수쪽 식은 대칭인 상태잖아요? 그거랑 같이 연결지어 생각해보면 될 것 같아요~
저도 27번 저렇게 나오던데 뭐가 문제일까요
오잉 마무리를 안해뒀네요
15/8 + 1을 하면 답 잘 나옵니다
그러네요 왜 마무리를 안해뒀지
미적 28번, f>=0이고 , fa=0 이면 f'a=0임을 이용한건 알겠는데, 저거 절댓값 있는데 저렇게 미분해도 되나요?
아 이제봤네요
미분??? 미분이 아니라 절댓값인데 미분가능하다는 조건 활용해서 나온겁니다.
제가 질문을 맞게 이해한걸까요??