한달동안 생각했는데 안풀려서 다시 질문드립니다
중앙교육 수학익힘책 p320 10번 문제입니다
한번 올렸던 질문입니다 한달내내 생각한건 아니지만 틈틈이 생각해도 아이디어조차 떠오르지가 않네요
n이 홀수이면 nCr을 n으로 나누면 왜 나누어 떨어지지않는지 설명해주세요
단, r은 0<r<n 입니다
n이 짝수일때는 나누어 떨어지나요??
익힘책문제라 계속 생각하면 풀리겠지 생각했는데 안 풀리네요
답변 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사탐러인데 경희국제캠 공대 왤케 후하게나오지 낙지는 개짬
-
미숫가루마렵댜 1
온뇬뇸
-
조교일 개빡세네 4
와..
-
ㅈㄱㄴ
-
영어가 2리 가군에 고대를 쓸거 같긴 한데 사범대 말고 가능한 과가 있는지 모르겠어서 물어봅니다..
-
여러분! 추천해주세야!! 문제를 풀고 싶은 게 아니고ㅓ 1!!!!!! 평가원...
-
사탐 아에 지원 불가능할정도로
-
엄청 무섭게 달려오는데
-
ㅠㅠ 분위기 왜이래 ㅠ
-
대성패스밖에 없어서 왠만하면 대성에서 끝내고싶은데... 사문생윤 vs 사문정법 다...
-
어디서 확인해요?
-
건물은예뻐 4
-
민지 누님 4
저도 안아주시면 안 될까요
-
3월모의때 과탐2과목은 메가에 어떻게 입력하나요?? 10
3월 과탐성적까지 다 입력해야 하는 걸로 알고있는데요. 의미없는 과목이라 그냥 한...
-
후..
-
조교.. 2
조교를 2개 3개씩 동시에 하기도 하나요?
-
천만덕 나눔 6
오눌 내로 절 납치하세요
-
07애들이 많아가지고 하
-
난 짱이야
-
ㅇㅇ
-
유명함?
-
2024 국내 1000대 기업 CEO 출신대학/전공 6
오늘자 뉴스입니다. 참고용
-
오늘수업끝 3
강의를안들었으므로오늘내용을바로복습하면정말좋겠군요
-
나는 여자하고 서울대쓸래
-
20살 재수생인데 제가 다니던 재수학원이나 부모님이 제 수능 성적표 평가원들어가서...
-
메가패스로 25 강의 수강 신청하고 교재까지 샀는데 26버전으로 올라오면 25버전은 못 보나요?
-
다 떨어질 가능성 큼? 아니면 좀 상향도 더 써봐야되나
-
ㅇㅇ
-
과 상관없이 아무데나라도 절대 안될까요 ㅠ
-
한양대 철학과 가능한가요? 더 낮은 과라도..
-
서강자전좋아보임 4
매우자유로울거같아보임 자유로운거싫으면별로인가
-
금연 중 인데 6
마렵네
-
수능 전에 계속 보이시던데 수능 끝나고 와보니까 왜 안보이시지 이분 어디갔나요?
-
문과랑 이과 둘다 추천부탁드립니다..
-
앙기모띠
-
독서실에서 인강 듣고 노래 듣고 하다보니까 에어팟을 끼는 시간이 빼는 시간보다...
-
현우진의 드릴, 드크북 김종익 파이널 모의고사, 잘되는 기출 삼극사기 현돌 실개완...
-
여기 실채후에도 잘 풀렸으면 좋겠다..
-
ㅁㅌㅊ?
-
술 안먹엇는데;;
-
친구논술구경옴
-
뭐 친구? 0
-
질문해줌 38
-
화학1난민인데 물1는 중3때 학원다닐때 하지말라는 소리 들었을정도로 노재능 생명도...
-
평가원 #~#
-
이대로간헐적단식
-
못 가르치는 교수님은 똑같이 2시간인데 너무 오래 걸림 심지어 아직도 안 끝남 아...
-
와 이정환 1
두각 홈페이지에 프로필 사진 미쳤네 너무 잘생겼다 샤프해 보이고
-
5-8-7된거 하나 있고 계속 2칸 ㅇㅈㄹ 하다가 (텔그선 50~60진동) 4칸으로 바뀐거 있음
-
07현역 국수탐(언매미적화2지2) 다 과외로 하는게 더 안정적일까요?
문제가 nCr 에 대해서 묻는거에요? 시그마 nCr을 묻는거에요?
문제가 nCr 에 대해서 묻는거에요? 시그마 nCr을 묻는거에요?
nCr에 대해서 묻는겁니다
고등학교 1학년 조합 내용입니다
n=3,r=1 3C1 /3 =1 나눠 떨어지는데요 ?
nCr / r = n * n-1Cr-1 이라서 r로나누면 나눠떨어지기는하는데 문제 맞는지 다시확인좀.
이미설전컴님 답변 고맙습니다
정확하게는
(1) n(n+1)(n+2)...(n+r-1)은 r!(r팩토리알) 로 나누어 떨어진다
(2) n이 홀수이면 nCr은 n으로 나누어 떨어진다(단, 0
이건 n이 짝수 홀수냐에 따라 성립하고 안 하고의 문제가 아니라, 약간 복잡합니다.
n을 소인수분해해서 n= p_1 ^e_1 * p_2 ^e_2 * ... * p_s ^e_s 이 되었다고 할게요. (p_i 들은 서로 다른 소수, e_i 들은 자연수.)
예를 들어 n=2^3 * 3^2 이면 p_1 =2 , e_1 =3 , p_2 =3, e_2 =2 이런 식이겠지요.
먼저, m! 에 들어 있는 소수p_1의 개수는 sum_{k=1}^{무한대} [ m/(p_1 ^k) ] 입니다. ( [ x ] 는 가우스 기호로 x 이하의 최대 정수 나타냄.)
따라서 nCr = n! / ( r! (n-r)! ) 에 들어 있는 소수p_1의 개수는 sum_{k=1}^{무한대} ( [ n/(p_1 ^k) ] - [ r/(p_1 ^k) ] - [ (n-r)/(p_1 ^k) ] ) 입니다.
따러서 n을 나누는 소수 p_ i에 대해서(i=1,2, ... ,s) 위의 값 sum_{k=1}^{무한대} ( [ n/(p_i ^k) ] - [ r/(p_i ^k) ] - [ (n-r)/(p_i ^k) ] ) >= e_i 이면 nCr 이 n의 배수가 됩니다.
이를 달리 말하면, n, r, n-r 세 수를 p_i 진법으로 표기해서 r과 n-r을 더하면 n이 나올텐데, 이 때 자리올림이 e_i 번 이상 나오면 nCr이 n의 배수가 됩니다.
(자리올림을 정확히 정의해야 하는데, r과 n-r의 p_i진법 표현에서 대응되는 동일한 자리번째 숫자끼리 더해서 그 뒷자리로(일의 자리 가까운 쪽을 앞쪽으로 보겠습니다.) 자리 올림이 있느냐 없느냐 보는 개념입니다. 이 때 더 앞쪽자리에서 올라온 1이 있다면 이것도 물론 더했을 시, 자리올림이 있는지 없는지를 보는 것이고요.)
예를 들어 9C3이 3을 몇 개나 가지고 있는지 보려면 (3으로 몇 번이나 나누어지는지..)
n=9, r=3, n-r=6인 상황에서 3진법으로
r = 10
n-r= 20
n =100
이렇게 되는데, 1의 자리에서 3의 자리로는 자리 올림이 없고, 3의 자리에서 9의 자리로는 자리 올림이 있으니까, 총 자리 올림 횟수는 1. 따라서 9C3은 3을 정확히 1개만 가지고 있는 것이니, 3^2의 배수는 될 수 없겠지요.
8C3을 보면, n=8, r=3, n-r=5이고 2진법으로
r = 11
n-r= 101
n = 1000
에서 1의 자리->2의 자리 로 자리 올림 있음. 2의 자리->4의 자리 로 자리 올림 있음. 4의 자리->8의 자리 로 자리 올림 있음. 총 횟수 3.
따라서 8C3은 2를 3개 가지고 있고, 2^3의 배수임. (2^4의 배수는 아니고요)
syzy님 정말 고맙습니다
정말 상세하게 성의있게 가르쳐 주셔서 감동입니다
정말 감사해요
댓글 달아주신 모든분들 정말 고맙습니다
큰 도움이 되었습니다