(안녕맨)<화요 수학칼럼 - 적분이란? >
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이과 백분위 0
언미생지 80 96 2 96 92 어디갈수있나요
-
ㅇㅈ 18
ㅋㅋㅋ
-
갑자기발작하는중임 나 탈출할거임 나도 연고서성한 갈거임 ㅈㅂ
-
어그로 끌고 혼자 공부하는거라니까
-
아 ㅋㅋㅋㅋ 4
전에 썸타던 사람 프로필 들어가봤더니 같이 술마시던 사람이랑 연애중이었네......
-
백강 고시체 배워두어라.
-
(혈계)도태남 외 안되?
-
ㅇㅇ
-
난이도 어떠셨음? 병훈햄 피셜 강대는 수험생들 마지막 자살 방지에는 전혀 관심이 없다 라고 함
-
사실 짤녀 예쁨 7
리제리제
-
뉴비에요! 3
반갑습니다 모두 수이팅!
-
킼 4
-
아오하루 Lv.23 10
장비 초보용사 갑옷세트 Lv.1 두동강난 성검 Lv.1 스텟 힘 1 민첩 1 지능...
-
대가리 깨지겠네 1
수학은 좀 아닌 걸로
-
수1 수2 뉴런 끝냈고 김기현으로 갈아타려는데 개념은 킥오프부터 들으면 되냐?
-
아니저진짜 5
드루이드로전직해야할듯고양이들이날너무좋아해
-
빨이 들으러 가셈 국어시간에 생각날지도 모르지만
-
못생겨서울었어 10
-
강의 방식이나 관련해서 알려주실 분 있나여...
-
또 기만 메타야 10
에욱
-
담주에 냥대예체능이랑 하는 미팅 나가기로 함... ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 22살 인생 개꿀잼
-
사설을 풀면 독서는 이상한데서 자꾸 범주 놓치고 케이스 분류 못해서 날리고 문학은...
-
강k랑 비슷한건가? 이름 특이하네요 난이도는 어떤지 궁금
-
나도 잘생김 15
암튼 그럼
-
모르는고양이냅다만지기
-
아이디 : sallyrin
-
무파마 맛있네요 1
국물이 쥑이네~ 다 먹고 썬칩 먹어야지
-
김민주 영화나온다
-
기겁나 빨려서 저녁먹고는 집중전혀 안되던데 이거 저만그러나요...n제 풀어야하는데...
-
나 진짜 잘생격다니까 12
-
취침. 9
안녕히.
-
2월부터 공부했는데 왜 ㅈ된거지 할거 존나많고 다 못보고가게생겼네 사탐은 공부를...
-
개화나네 1
나는 왜이렇게 국어 수학 탐구 버러지인거지 씨발 씨발 씨발
-
옆구리가 시리다 17
이게 외로움인것일가.. 춥다추워
-
올해 지구과학1 20번 소재 예상해봅니다(뇌피셜 주의) 6
1. 도플러효과를 이용한 중심별 공전속도 구하기 (이때 기준파장은 6월처럼 숨겨져...
-
하
-
55만원 가량 들어오는데 왜 돈이 없지 미친새낀가 나 진짜 생활비까지 들어오는데도 돈이 없네
-
뭐가문제지 이런 젠장
-
왜 마음만은 05들과 함께하는 것 같지...
-
와 1년에 한번 아플까말까 하는데 그게 딱 수능 10일전ㅋㅋㅋㅋ 몸살인가 ㅅㅂ
-
미적 65인데요.. 제가수학을너무너무못해서 수능3이 목표인데 ㄱㅊ을까요...하ㅜㅜ
-
내년 4월쯤에 공군 들어갈거같은데 내년이랑 그다음해까지는 교육과정 그대로...
-
백남운 1
ㅅ
-
9모의 향기가 펄펄나는 화작 1컷 100 역시 9모가 생각나는 9모 복붙 수준의...
-
수능까지 끝낼순 있나요?
-
중대생분들 요즘 취업난에 선배님들 취업 잘하셨나요? 0
편입에 생각이 있어서 아웃풋이 불경기에도 잘 나오는지 긍금합니다
-
안경이 잘어울리고 좀 숫기없는데 은근 웃긴 사람 근데 얼굴이 켄타로 같았으면 좋겠어요 ^_^
-
이거 ㅇㅇ.. 근데 21번에 맞는 위치인가 싶음..
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ