(안녕맨)<토요 수학칼럼 - 외워두면 좋은 면적 공식>
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
cf) 8월 1일 부터 대치동 오르비 현강 개강합니다
끝장인강 총정리 & 수능대비 기출시험지 10회 8주 커리인데
제 현강의 특징은 필기가 전혀 필요 없습니다 모든 필기된 교재는 미리 제공합니다
http://class.orbi.kr/group/85/ 참고하세요
(첫 강좌는 무료입니다 시간되시는분들 오셔서 강의 들어보시고 등록 판단 하시면 됩니다
그리고 그날 오시는분 한명 추첨해서 컬쳐랜드 문화 상품권 1만원권 선물 드릴게요 ㅎ)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅇ?
-
25수학 공통15번까지 스뮤스하게 풀려서 만점인줄 ㅎ 0
ㅎㅎ 주관식에서 미끄덩햇네 ㅎ
-
어느게 더 어려우려나요?
-
해보고 싶은데 필력이 너무 그지 같아서 못 알아 먹을 것 같음 ㅠ
-
국어: 내가 안 물어봤으면 안할뻔함 수학: 그나마 시켜주긴 함 영어: ㄹㅇ안함...
-
1.미미미누 교대,교사 관련 영상들 + 댓글창에 현직 교사들 댓글 2.pd수첩...
-
”일반 컷 99“
-
설사범, 연생과대, 고정경대에서 이과로 전과 힘든가요?? 0
학벌올리고 전과하고싶은디 ㅠㅠ 전과 힘든가요??
-
수능 끝나고 싹 다 가정학습 처리해줘서 2월 졸업식 때까지 학교 5일도 안 나갔음...
-
작수 지구 낮3->올수 45 공부법 칼럼 써도 됨? 0
작수 37인가 받고 낮3 떴고 7월부터 반수해서 6모 노베로 치니까 30점 나왔고...
-
한지,세지도 ㄱㅊ나요? 제가 타임어택,안정성 떨어지는걸 극혐해서요 ㅠ
-
하고 싶은 거 다 해봐야지 나중에 후회하는 것보단 vs돈도없구자신도없음 에휴
-
침대에 달린 등도 안 끄고 잤네
-
주어진 함수 f(x)의 그래프가 다음과 같습니다. 단순하게 생각할 때 이 함수에...
-
주변에 미적 100은 많이 없는데 96 92는 진짜 개 많음 미적 1컷 92는...
-
화장실도 인기다리게 칸 개많았고 의자랑 책상도 좀 옛날거긴했는데 그래도 사이즈도...
-
아니 소재 진짜 막 쓰네.. 딥페이크 저거는 아예 저 글자 빼냐 마냐 하나로 정치...
-
1년 내내 안씻는 물스퍼거 놈들이 너무 많아
-
파업 때문이구나 ㅡㅡ
-
현실과이상의괴리 8
내적갈등 해소방안 : 한번더보기
-
국어 노베 0
국어 공부해본 적 없고 고2라서 모의고사 칠 때만 모고 푼 적 없어요. 진짜...
-
과탐가산 0
과탐 2등급 대가리가 가산5프로정도 받으면 사탐 높1이랑 비슷해지나요?
-
수리논술ㅋㅋ 1
기하 오늘 시작할 예정인데 한양대 가능한 부분? 올해 수능 미적은93점임.
-
너네 아직도 협상 중이잖아 원딜 바이퍼 잖아 피넛제카딜라이트 있잖아 제발
-
한문제 풀면 맞췄나? 틀렸나? 너무 궁금해서 채점병 도져요… 이 습관도 고쳐야할텐딩…힝…
-
얼버기 11
행복한꿈을 꿨어요
-
올해 수능을 바탕으로 내년을 예측한다? 논리적으로 보일수는 있겠지 근데 거의 맞추는...
-
실패자가 대다수이다 국잘 수망 탐잘 국잘 수잘 탐망 조합으로 대부분 복학 예정이다
-
이거에 따라 대학이 바뀔 수도...
-
수능 치기 일주일전엔 더 이상은 못해 ㅅㅂ 이런 상태였었는데 수능 끝나고 슬금슬금...
-
나도 팔로워가 쭉쭉 오르겠지 26년도수능은 내꺼다 !
-
아 그때를 위해 열심히 피를 뽑겠다...
-
제곧내
-
상단 번호만 잘 나와있는지만 보게 시키던데 ㅋㅋㅋㅋ 사실 국어는 파본검사 안해서 더...
-
무슨 사탐 얘기만듣고 개ㅈ밥과목인줄 알고(맞긴함) 저능아과목 나정도면 1등급...
-
예를 들어 닉네임이 호타로 이면 진짜로 짤남같이 생김
-
면접 보러 오라고 하시는데 이런 거 첨이라서.. 이번 수능 영어 94점이긴 한데...
-
왕
-
좋은 아침입니다 6
-
내년에 물1 할거임
-
표본분석 스나 하는 법 내가 이해한게 맞나 좀 봐주실분 2
진학사에서 그 모의지원 메뉴 들어가서 내 위로 깔려있는놈들이 여기 말고 어디...
-
대학 라인 0
과 상관없이 대학라인 어디까지 가능한가요…ㅜㅜ
-
수능을 그리 잘 보진 못해서 닉값은 정시로 못할 것 같아요 수시로는 할 수...
-
트럼프당선과 함께 보호무역주의가 가속화되고 특히 트럼프는 한국을 머니머신으로 부르며...
-
실전 30분안에 당황안타고 아는거 다 보여주는게 얼마나 빡센건지 다시한번느낌ㅋㅋ...
-
19일 뭐 업뎃 된다 했던거 같은데 뭐였음?
-
재수 성공 2
재수 성공의 기준이 뭐라고 생각하시나요?
-
과탐이나 사탐이나 다 똑같은 듯 그나마 괜찮은 곳은 투과목이나 지리, 역사 라고 봄...
-
국어 : 밑에 페이지 숫자만 확인시킴 나머지 : 안함 감독관들 지침좀 제발 제대로 읽고 왔으면 ㅠㅠ
저거 외울시간에 잠자는게 이득
맞습니다 제목 그대로 필수가 아니라 "알아두면 좋은" 이에요
외우는 거 귀찮으면 이런게 있구나 하고 넘어가시면 되구요
근데 비슷한 부분이 많아서 외우는데 그리 어렵진 안을 거에요 ㅎ
현강에서 지도해보면 분모는 6 12 30 (6의 배수)이고 분자는 3승 4승 5승 순이라
금방 암기를 하더라고요
그리고 실제로 모평에서 나온적이 몇번있어서 알아두면 즉답으로 문제를 푸는경우가 많습니다
문과면 외워둬서 나쁠건없는데요 댓글이너무공격적 ㅋ ㅋ
현t도 챙겨가라하시고
감사합니다
하지만 평가는 주관적인거라 모든 분들의견 다 수렴합니다 ㅎ
그게 강사의 기본 자세구요
현우진 선생님도 저거 말해주시나요?? 빡쌤도 말해주셨던 걸로 기억하는데
수분감기벡 '이과'에서도 챙겨가라하세욥
'알아둬도 그냥그런'
무슨 말을 저런 식으로 하나....사회생활 힘들 듯..
저건 필수적으로 외워야 됨 ㅋㅋㅋㅋㅋ 한석원도 저거 기억해두라고 하고 자주나옴 저건
사회생활 가능하세요?
ㅋㅋ
공부하다보면 외워지는 거지요
당장 이번 7월 나형 30번도 3번 공식이 등장하니까요
좋네요
네 이번 칼럼이 그걸 중점으로 쓴거에요 ㅎ
공식이라는건 자주 나오고 쓰다보니깐 관용적인것을 정리한것이니깐요
저는 수학안하는 학생입니다
그래서 글이 좋은진 안좋은지는 모르겠지만 이런칼럼에 학생이 피해보는 일은 있을것같지는 않아보입니다
작년에 불미스러운일때문에 인식이 안좋으신건 알겠습니다. 저도 너무했다 생각은 들고요
근데 학생을 위해 칼럼쓰는글에 공격적인 댓글 (ㅋ , 믿고거릅니다 , 등등) 올라오고 그러는게 너무 빈번하게보이더군요
그런감정or인식으로 인해 보기싫으시면 거르면 될텐데 굳이 왜 글에 들어와서 그런글을 남기는지 모르겠네요
무슨 싸우고싶어서 안달이난 사람같아보여서
보기싫으면 보지마세요 그냥... 그런감정은 개인적으로 글을써서 표현하던가 칼럼에 댓글로 이게 뭡니까...
ㅋㅋㅋㅋㄹㅇ 애같애요
외우는게 쓸모없다니... 전 a(x-p)^m(x-q)^n 일반화해서 외우고 다니는데... 너무들 하시네요..
일반화까지 ㄷㄷ 일반화하면 뭐에여?
am!n!(p-q)^(m+n+1)/(m+n+1)!
이것말고도 일반화해서 외우면 꿀인게 꽤 있어요... 예를들면 cos합법칙?
cos(c)=cos(a)cos(b) + sin(a)sin(b)cos(r) 이렇게요
일반화는 오바인듯 전 많이쓰다가 자연럽게 외워졌는대
사관학교나 경찰대 문제 풀다보니까 많이 필요해서 그냥 외워버렸어요..
교주님이다
유용한 정보 감사합니다.
좋게 봐주셔서 감사요 ㅎ
저거 정말 개꿀입니다..... 왜 저런걸 거부하시는지... 미적분 할 때 저런거 진짜 개꿀인데
도움이 되셨다니 다행이네요 ㅎ
서울 의대간 형도 예전에 꿀팁이라고 알려줬던 건데 까먹고 잇엇던 마당에 감사합니다!
삼각함수도 넓이 알아두면 편한데...
선생님 좌표에서 평면넓이 구할때 신발끈공식에 대해 어떻게 생각하시나요??
필수죠 솔직히 좌표 알때 신발끈 공식이 최고에요 ㅎ
그거 삼각형만되는거죠?? 원점하나걸친
보통 삼각형에서 많이 쓰죠
특히 원점을 포함하면 (0, 0) , (a, b) , (c, d) 일때 1/2 | ad -bc |라는 공식으로 바로 구할수있어요
원점 아니라도 상관 없고, 임의의 다각형에 대해서도 성립합니다
네 맞습니다 ㅎ 참고로 시계 반대 방향으로 배열하면 항상 양의 값을 갖아서
구지 절대값을 할 필요가 없습니다
헐 그랬군요 무조건원점하나걸치고 삼각형만되는줄알았는데..
이미지세탁 ㄱㅇㄷ
솔직히 경우가 어떻든 학생들이랑 소통할때가 가장 기쁩니다
예전에 개인 카페 운영할때랑 수만휘 멘토에 있을때는 하루에 100개 넘는 댓글을 매일 하고 그랬는데
그때가 가장 행복했었네요 ㅎ ( 지금은 기력이 안됨 ㅠㅠ)
감사합니당
^_^ v
2,3,4공식도 필요한가요?? 1번공식은 알고있는데 234는 한완수에 나올법한 공식같아요
저만 모르고 있었던거는 아니죠??
말 그대로 "알면 좋은" 입니다
필수는 아닙니다
선생님
선생님 칼럼 편히 볼 수 있도록 링크 달아주셔서 너무 감사합니다
이렇게 칼럼 제목을 한꺼번에 보니 너무 좋아요
앞으로도 좋은 칼럼 부탁드립니다
전 선생님 강의 스타일 좋아합니다
실제로 확통 강의 재미있게 보기도 했구요
안녕맨선생님 파이팅 !!!
감사합니다 기분 짱이네요!!!
매번 도움되는 칼럼 올려주셔서 감사합니다 !
굳이 여기와서 시비터는 분들은 사회생활 어찌하실지 궁금하네요
감사합니다
저는 솔직히 다들 조카뻘 되는분들이라 그리 연연하지 않아요
그냥 갖고 노시다가 제 자리에만 놓으면 됩니다 ㅎㅎ