수학에서 치환(쌤들 많이 봐주세요ㅜㅜ)
아까 현우진t 강의듣다가 극대,극소에서 치환에 대한 이야기가 나와서 갑자기 생각이 들었는데, 이제까지 문제풀때 그냥 아무 생각없이 치환해서 문제를 풀었었는데(지수로그나 삼각함수 문제 등등등) 생각해 보니깐 치환을 해서 치환된 식을 풀어서 답을 구하면 그게 원래 식으로 문제를 풀었을 때의 결과와 정확이 동일하다는 보장이 있을까?? 라는 생각이 갑자기 들어서요.. 혼자 막 생각을 해봤는데 도저히 모르겠네요ㅜㅜ 치환하는 의미와 치환했을 때 결과가 보장되는 이유 아시는 분 댓글이나 쪽지 주시면 정말정말 감사하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
. 1
..
-
선착순 5명 19
이미지 써드림
-
장원영 4
어케 더 이뻐질 수가 있는거지 ㄷㄷ
-
수학 개조졌는데요… 국어는 가채점 상으론 95 인데 문제 푼 기억으론 98 입니다…...
-
저 대학갈수이ㅛ나요? 12
이거 문이과 상관없이 어디까지 더ㅣ나요..?ㅠㅠㅠ
-
본관도예쁘고 본관에서바라본경치(경희대치대아님)도예뻐요 평화의전당은경희대의자랑...
-
걍 베이스 자체가 딸리는거같은데 누구들어야 좋을까요 이명학 듣고 이번수능 ㅈ됨
-
ㅈㄱㄴ
-
종강을 바란다
-
편의점 켘 추천좀 아님 낮에 살까 그냥
-
국어 언매1틀 86 수학 공1 미2 88 21 될까요ㅠㅠ 최저 걸려있어요
-
지하철 없는건 너무 패널티가 큰거 같음...
-
수시 제일 낮은데가 경상대 경영인데 그것도 안될려나
-
메가패스 가격 떨어졌으면 좋겠다 하는 사람들은 개추 0
ㅇㄷㄴㅂㅌ
-
요즘 학과 때문에 정신병 걸릴 것 같은데 문과가 이렇게 암울한지 몰랐어요 평균4등급...
-
이거 투가산점때문에 이런건가요.. 과탐 1+1로는 설치가기가 이렇게 어렵나
-
으으
-
https://orbi.kr/00037321694/%EC%9E%AC%EC%88%98%...
-
비오는 소리인줄 알았는데 눈 녹는 소리였구냐
-
웨 클릭?
-
100만원 또 날리게 생겼네 자살 마렵다 진짜 ㅅㅂ........
-
어차피 실채점 나오면 갈릴텐데 미리 돌릴필요가 잇을까여
-
유튭 최근기록 4
유튜브 잘 안 봄 ;;;;;;;;
-
언매 2025 올인원이랑 2026 올인원 연도별로 차이가 큰가요?
-
어디 인프라가 더 좋음? 인프라 기준은 교통 말고 학교 자체 시설로 따지면요
-
역시 수능끝나니 활발하네요 옛날 생각나네
-
사수생여붕이 8
재종가면 왕 언니지 왕 언니 내가짱먹는거지.....ㅜ
-
방청소중입니다
-
확미기 9
난이도 미>>>>>>>>기>확 진입장벽 미>>>기>>>확 표점 미>기>>>>>>확...
-
은테 입갤 5
-
문돌이 미적런 13
25수학 84 (확통만점)이었습니다 한 번 더 할거같은데 국영탐에 시간 만ㅎ이 안...
-
고양이랑 함께살고싶다 12
나를 좋아해주는 고양이랑 평생 함께살고싶음
-
뭘 더 추천드리나요?
-
내가 생각하는 허수 특 12
맨날 뭐만하면 ~간절해요 ㅠㅠ ㅋㅋㅋㅋ 간절하면 진작 했어야지 라고 댓글 달고 싶은...
-
은테가 달고 싶어요
-
전 이만..
-
과탐 선택 1
올해 물1화1 50 48 받고 내년에 설의 목표로 둘다 바꿀려고 하는데 물2화2는...
-
작년에 자연계열 12개 정도가 커트라인인데 올해는 많이 어려웠다 생각해서...
-
같은 대학 내에서 인문이 노랑 뜨고 상경이 연초 뜨는 건 반영비 때문에...
-
되새기며 내일은 더 열심히 사는 내가 되기 위해 자러갑니다 굿밤
-
잘자요 굿나잇!
-
누님의은혜 10
대각선 앞자리에 83년생이신 왕언니? 수험생분이 계시길래 왠지 한국사 개...
-
2025학년도 6평입니다~ 제 글씨가 좀 지렁이라 5랑 3이랑 잘 구분하셔야할겁니다
-
내년기하응시자수 9
몇명예상함
-
가입 불가임
-
ㅈㄱㄴ 생각해보니 막상 뭐 별거 없을듯한
-
12월 1월에도 엔제 푸셧나요?
-
의대는 참 높뇨이
-
햄스터 키울까 2
뭔가를키우고싶은욕구에휩싸이는밤이구나
치환은 복잡한 식의 연산을 단순화 시키기 위한 도구이고 변역에 따라 같은 결과가 보장될 수도 있고 아닐수도 있습니다
그럼 치환을 막하면 안되는건가요??
변역을 정확히 알면 상관없죠~
그런데 치환을 하면 전혀 다른함수가 나오는데 그 함수로 계산한 결과랑 원래함수로 계산한 결과가 같은지 어떻게 알수잇는거죠??
합성함수에서 치역이 다시 정의역이 되는 원리와 같습니다.
어렴풋이 이해되네요ㅜㅜ 설명감사합니다
극대 극소 찾을때는 치환 안하는게 좋아요
치환했을때 범위가 극점에 딱 걸려버리면 이게 극점인지 아닌지를 확인할 방법이 없어요
정의역만 잘 확인한다면 ㄱㅊ. 근데 삼각함수 치환은 위험함
왜요??
예를 들면 sinx를 t값으로 치환한다 치면 t를 만족하는 x값이 유일하지 않을 수 있기 때문에 실수가 나올수 있음. 말로하기 좀 어렵네요;
그럼 치환적분에서 치환하는 함수가 적분구간 내에서 일대일 대응이어야 치환이 가능한 건가요??