Whitehead Torsion
Motivation: "그들의 대화" 에서 최근에 나오는 핵심 용어들 중 하나가 Whitehead torsion이라는 것인데, 이러한 것을 고려하는 이유에 대해서 먼저 설명하기로. 모든 것의 기원은 소위 "cobordism theory"에 기반을 함: Let $M$ and $N$ be smooth closed manifolds of dimension $n$. An \textit{$h$-cobordism} from $M$ to $N$ is a compact smooth manifold $B$ of dimension $(n+1)$ with boundary $\partial B \cong M\coprod N$ having the property that the inclusion maps from $M$ and $N$ to $B$ are homotopy equivalences. If $n\geq 5$ and the manifold $M$ is simply connected, then the Smale's $h$-cobordism theorem says that $B$ is diffeomorphic to a product $M\times [0,1]$ (and, in particular, $M$ is diffeomorphic to $N$).
다시 말해서, cobordism은 두 다양체 M,N을 자연스럽게 interpolate하는 것을 말함. 여기서 $h$는 homotopy를 말하고, 그 이유는 up to homotopy로 interpolate을 했기 때문. 5차원 이상에서는 이것이 어떤 면에서 ``trivial'' 하다는 것을 말함. Smale이 이 정리를 이용해서 5차원 이상에서의 Poincare Conjecture를 풀었음 (예에에전에 한번 이거 관련 글 썼던 것 같음).
이러한 좋은 이유에 의해서 cobordism theory를 not simply connected인 경우에는 어떻게 사용할 수 있을까 사람들이 고심을 하고, 그렇게 나온 것이 s-cobordism theory임. 이것을 좀 더 자세히 설명하기 위해서는 몇몇 정의들이 필요함:
Definition. Let $X$ be a finite simplicial complex. Suppose that there is a simplex $\sigma\subset X$ containing a face $\sigma_0\subset\sigma$ such that $\sigma$ is not contained in any larger simplex of $X$, and $\sigma_0$ is not contained in any larger simplex other than $\sigma$. Let $Y\subset X$ be the subcomplex obtained by removing the interiors of $\sigma$ and $\sigma_0$. Then the inclusion $\iota:Y\hookrightarrow X$ is a homotopy equivalence. In this situation, we will say that $\iota$ is an \textit{elementary expansion}. Note that $Y$ is a retract of $X$; a retraction $X$ onto $Y$ will be called the \textit{elementary collapse}.
Definition. Let $f:Y\to X$ be a map between finite simplicial complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition of elementary expansions and elementary collapses.
모든 compact smooth manifold는 PL 이기 때문에 finite simplicial complex structure를 갖게 됨. 따라서, smooth manifold의 경우에는 simple homotopy equivalence라는 것을 이야기할 수 있음.
s-cobordism theorem. Let $B$ be an $h$-cobordism theorem between smooth manifolds $M$ and $N$ of dimension $\geq 5$. Then $B$ is diffeomorphic to a product $M\times[0,1]$ if and only if the inclusion map $M\hookrightarrow B$ is a simple homotopy equivalence.
이제 이 s-cobordism theorem을 적용하기 위해서는 언제 homotopy equivalence of smooth manifolds $f:X\to Y$가 simple homotopy equivalence인지 알아내는 것. 이걸 Whitehead가 해결했는데, 각각의 homotopy equivalence $f:X\to Y$에 대해서, 어떤 algebraic invariant $\tau(f)$ called the \textit{Whitehead torsion} of $f$ 라고 하고, 이 torsion은 \textit{Whitehead group} of $X$라고 불리는 특정 abelian group $\mathrm{Wh}(X)$에 존재함. 이 torsion이 정확히 simple homotopy equivalence의 obtruction임. 다시 말해서, $\tau(f)$ vanishes if and only if $f$ is a simple homotopy equivalence.
이제 이 Whitehead torsion이 구체적으로 무엇인지 알아보기로. 먼저 앞에서 정의한 simple homotopy equivalence의 정의를 조금 더 구체적으로 적어봄.
Construction 1. Let $D^n$ denote the closed unit ball of dimension $n$ and let $S^{n-1} = \partial D^n$ denote its boundary. We will regard $S^{n-1}$ as decomposed into hemispheres $S^{n-1}_-$ and $S^{n-1}_+$ which meet along the ``equator'' $S^{n-2} = S^{n-1}_-\cap S^{n-1}_+$.
Let $Y$ be a CW complex equipped with a map $f:(S^{n-1}_-,S^{n-2})\to (Y^{n-1},Y^{n-2})$. Then the pushout $Y\coprod_{S^{n-1}_-}D^n$ has the structure of a CW complex which is obtained from $Y$ by adding two more cells: an $(n-1)$-cell given by the image of the interior of $S^{n-1}_+$ (attached via the map $f|_{S^{n-2}}:S^{n-2}\to Y^{n-2}$) and an $n$-cell given by the image of the interior of $D^n$ attached via the map
$$S^{n-1} = S^{n-1}_-\coprod_{S^{n-2}}S^{n-1}_+\to Y^{n-1}\coprod_{S^{n-2}}S^{n-1}_+.$$
In this case, we will refer to the CW complex $Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expension} of $Y$, and to the inclusion map $Y\hookrightarrow Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expansion}.
The hemisphere $S^{n-1}_-\subset D^n$ is a (deformation) retract of $D^n$. Composition with any retraction induces a (celluler) $c:Y\coprod_{S^{n-1}_-}D^n\to Y$, which we will refer to as an \textit{elementary collapse}. Note that the homotopy class of $c$ does not depend on the choice of retraction $D^n\to S^{n-1}_-$.
Definition 2. Let $f:X\to Y$ be a map of CW complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition
$$X = X_0\xrightarrow{f_1}X_1\xrightarrow{f_2}X_2\to\cdots\xrightarrow{f_n}X_n = Y,$$
where each $f_i$ is either an elementary expansion or an elementary collapse.
We say that two finite CW complexes are \textit{simple homotopy equivalent} if there exists a simple homotopy equivalence between them.
Example. Let $X$ and $Y$ be finite CW complexes and let $f:X\to Y$ be a continuous map. We let $M(f) = (X\times[0,1])\coprod_{X\times\{1\}}Y$ denote the mapping cylinder of $f$. If $f$ is a celluler map, then we can regard $M(f)$ as a finite CW complex (taking the cells of $M(f)$ to be the cells of $Y$ together with cells of the form $e\times\{0\}$ and $e\times(0,1)$, where $e$ is a cell of $X$). The inclusion $Y\hookrightarrow M(f)$ is always a simple homotopy equivalence: in fact, it can be obtained by a finite sequence of elementary expansions which simultaneously add pairs of cells $e\times\{0\}$ and $e\times(0,1)$ (where we add cells in order of increasing dimension).
Note that the map $f$ is homotopic to a composition
$$X\simeq X\times\{0\}\xrightarrow{\iota}M(f)\xrightarrow{r}Y,$$
where $r$ is the canonical retraction from $M(f)$ onto $Y$ (which can be obtained by composing a finite sequence elementary collapses). It follows that $f$ is a simple homotopy equivalence if and only if $\iota$ is a simple homotopy equivalence. Consequently, when we are studying the question of whether or not some map $f$ is a simple homotopy equivalence, there is no real loss of generality in assuming that $f$ is the inclusion of a subcomplex.
Rmk. Celluler approximation theorem says that any continuous map between CW complexes can be homotoped to be a celluler map. In particular, the above example holds for general continuous map $f$.
Simple homotopy equivalence는 homotopy equivalence인 것은 눈으로 쉽게 확인할 수 있다. s-cobordism theorem을 적용하기 위해서, 우리는 그 역이 필요하다.
Question. Let $f:X\to Y$ be a homotopy equivalence between finite CW complexes. Is $f$ a simple homotopy equivalence? If not, how can we tell?
앞서 말했듯이, 이 질문에 대한 대답은 정확히 Whitehead torsion. 이걸 만들기 위해서 먼저 몇몇 정의들이 필요함. 지금까지는 상당히 자명한 것들만 나왔는데 지금부터는 약간 익숙치 않은 것들이 등장하기 시작함.
Definition. Let $R$ be a ring (not necessarily commutative). For each integer $n\geq 0$, we let $\mathrm{GL}_n(R)$ denote the group of automorphisms of $R^n$ as a right $R$-module. Every automorphism $\alpha$ of $R^n$ extends to an automorphism $\alpha\oplus 1_R$ of $R^{n+1}$; this construction yields inclusions
$$\mathrm{GL}_1(R)\hookrightarrow\mathrm{GL}_2(R)\hookrightarrow\mathrm{GL}_3(R)\hookrightarrow\cdots.$$
We let $\mathrm{GL}_\infty(R)$ denote the direct limit of this sequence, and we define $K_1(R)$ to be the abelianization of $\mathrm{GL}_{\infty}(R)$.
Remark. 자 이 construction이 뭔가 natural 하면서도, 한편으로는 좀 어색한데, 만약 $R$이 commutative ring이라면, determinant function
$$\det:\mathrm{GL}_n(R)\to R^\times$$
이 group homomorphism을 줌. 자명히 det은 위의 direct system과 compatible 하기 때문에, direct limit으로 pass가 가능하고, $\det:K_1(R)\to R^\times$ 라는 group homomorphism을 induce함. 만약 $R$이 field 이거나 $\Bbb Z$ 라면, 이 det은 isomorphism이라는 것을 알 수 있음. (하지만 우리의 경우에 $R$은 group ring $\Bbb ZG$라 이 경우는 아님.)
Let $R$ be a ring. A \textit{based chain complex over $R$} is a bounded chain complex of $R$-modules
$$\cdots F_n\xrightarrow{d}F_{n-1}\xrightarrow{d}F_{n-2}\to\cdots,$$
together with a choice of unordered basis for each $F_m$ (so that each $F_m$ is a free $R$-module). In this case, we let $\chi(F_\ast)$ denote the sum $\sum(-1)^mr_m$, where $r_m$ denotes the cardinality of the (chosen) basis of $F_m$. We will refer to $\chi(F_\ast)$ as the \textit{Euler characteristic} of $(F_\ast,d)$.
Remark. If $R$ is a nonzero commutative ring, then the Euler characteristic $\chi(F_\ast)$ is independent of the choice of basis of the modules $F_\ast$. For a general noncommutative ring $R$, this need not be the case.
Let $(F_\ast,d)$ be a based chain complex over $R$ which is \textit{acyclic}, i.e., the homology of $(F_\ast,d)$ vanishes. Since each $F_m$ is a free $R$-module, it then follows that the identity map $1:F_\ast\to F_\ast$ is chain homotopic to zero, i.e., there exists a map $h:F_\ast\to F_{\ast+1}$ satisfying $dh+hd = 1$. We let $F_{\text{even}}:=\bigoplus_n F_{2n}$ and $F_{\text{odd}}:=\bigoplus_{n}F_{2n+1}$.
Lemma. In the above setting, the map $d+h:F_{\text{even}}\to F_{\text{odd}}$ is an isomorphism. $\square$
The specification of a basis for each $F_m$ determines isomorphisms
$$F_{\text{even}}\simeq R^a,\quad F_{\text{odd}}\simeq R^b$$
for some integers $a,b\geq 0$, which are well-defined up to the action of permutation matrices.
Definition. Let $\tilde{K}_1(R)$ denote the quotient of $K_1(R)$ by the subgroup $\langle \pm 1\rangle$. If $(F_\ast,d)$ is an acyclic based complex with $\chi(F_\ast) = 0$, we define the \textit{torsion} of $(F_\ast,d)$ to be the image of $d+h\in\mathrm{GL}_a(R)$ under the map $\mathrm{GL}_a(R)\to\mathrm{GL}_\infty(R)\to\tilde{K}_1(R)$. It can be shown that this definition does not depend on the ordering of the basis elements of $F_\ast$. We will denote the torsion of $(F_\ast,d)$ by $\tau(F_\ast)$.
Lemma. In the above definition, the torsion $\tau(F_\ast)$ is well-defined, i.e., does not depend on the choice of nulhomotopy $h$. $\square$
Definition. Let $f:X_\ast\to Y_\ast$ be a map of chain complexes over a ring $R$. The \textit{mapping cone of $f$} is defined to be the chain complex
$$C(f)_\ast = X_{\ast -1}\oplus Y_\ast$$
with differential $d(x,y) = (-dx,f(x)+dy)$. Note that if $X_\ast$ and $Y_\ast$ are based complexes, then we can regard $C(f)_\ast$ as a based complex (where we fix some convention for how our bases should be ordered).
Suppose that we have $\chi(X_\ast,d) = \chi(Y_\ast,d)$ and that $f$ is a \textit{quasi-isomorphism}, i.e. it induces an isomorphism on homology. Then $\chi(C(f)_\ast,d) = 0$ and $C(f)_\ast$ is acyclic. We define the \textit{torsion of $f$} to be the element $\tau(f) = \tau(C(f)_\ast,d)\in K_1(R)$.
이제 Whitehead torsion을 정의할 것인데, 정의의 동기를 주는 example을 먼저 보기로 함.
Example. Let $(F_\ast,d)$ be an acyclic based complex with $\chi(F_\ast) = 0$, and let $f$ be the identity map from $F_\ast$ to itself. Then the mapping cone $C(f)_\ast$ has an explicit nulhomotopy given by $(x,y)\mapsto(y,0)$. Identify $C(f)_{\text{even}}$ and $C(f)_{\text{odd}}$ with $F_\ast$, so that $d+h$ is given by
$$(x,y)\mapsto (y-dx,x+dy).$$
This map is given by a permutation matrix modulo the filtration by degree, so we have $\tau(f) = 1\in\tilde{K}_1(R)$.
Suppose $X,Y$ are finite CW complexes and that we are given a homotopy equivalence $f:X\to Y$. For simplicity, we assume that $X,Y$ are connected. We fix a base point $x\in X$ and set $G =\pi_1(X,x)\simeq \pi_1(Y,f(x))$. Let $\tilde{Y}$ be a universal cover of $Y$ and let $\tilde{X} = X_{\times_Y}\tilde{Y}$ be the corresponding universal cover of $X$, so that $G$ acts on $\tilde{X}$ and $\tilde{Y}$ by deck transformations. Let us further assume that $f$ is a celluler map. Then $f$ induces a map of cellular chain complexes
$$\lambda:C_\ast(\tilde{X};\Bbb Z)\to C_\ast(\tilde{Y};\Bbb Z).$$
Note that we can regard $C_\ast(\tilde{X},\Bbb Z)$ and $C_\ast(\tilde{Y};\Bbb Z)$ as chain complexes of free $\Bbb Z[G]$-modules, with basis elements in bijection with the cells of $X$ and $Y$ respectively. Since $f$ is a homotopy equivalence, the map $\lambda$ is a quasi-isomorphism. We may therefore consider the torsion $\tau(\lambda)\in\tilde{K}_1(\Bbb Z[G])$. However, it is not well-defined: in order to extract an element of $C_\ast(\tilde{X};\Bbb Z)$ from a cell $e\subset X$, we need to choose a cell of $\tilde{X}$ lying over $e$ (which is ambiguous up to the action of $G$) and an orientation of the cell $e$ (which is ambiguous up to a sign). This motivates the following:
Definition. Let $G$ be a group. The \textit{Whitehead group} $\mathrm{Wh}(G)$ of $G$ is the quotient of $K_1(\Bbb Z[G])$ by elements of the form $[\pm g]$, where $g\in G$.
If $f:X\to Y$ is a celluler homotopy equivalence of connected finite CW complexes, we define the \textit{Whitehead torsion} $\tau(f)\in\mathrm{Wh}(G)$ to be the image in $\mathrm{Wh}(G)$ of the torsion of the induced map
$$\lambda:C_\ast(\tilde{X};\Bbb Z)\to C_\ast(\tilde{Y};\Bbb Z).$$
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수스퍼거들 부활 가능할텐데
-
국잘수못이었어서
-
어떡하지 0
전에는 안그랫는데 이제는 마라탕 없이는 못살겟어요 분명 이틀전에 먹엇는데 또...
-
수능 99인데 아직도 이해가 안됨 그냥 문제가 좀 약간 이상한데… 물론 내가 이상할...
-
231115처럼 내는게 좋지않을까..
-
ㅠㅠ
-
아마 난 1교시 끝나고 시험장을 나가지 않았을까함 ㅋㅋ
-
25 제외하고 통합수능 하나 선택해서 보라고 한다면 난 23으로 하고 싶을듯..
-
수능엔 하염없이 진심인 새끼들....
-
실수만 유발해서 억지로 난이도 올리는 씹 적폐유형 241122처럼 내면 손 놓고...
-
분위기 좋네 이게 오르비지 서로 수능의 변화에 대해 생각도 나누고
-
고양이 5
프사
-
미적 사탐인데 인원 줄인다는 얘기가 있는데 진짜인가요?
-
기출은 했어요 시냅스도 하는데 뉴런에 시냅스 합쳐봤자 문제수가 별로 안되어서 더...
-
사설에서 개빡치는 수열 같은거 막 13개씩 분류해서 풀었던 경험을 쌓아두면...
-
그땐 9번 10번부터 물에술탄듯 술에물탄듯 주는 문제들이 아니었음 230909...
-
둘의 체감 난이도 타임어택정도 비교좀 해주실수잇나요
-
의대관 제로 때부터 있는 중인데 기숙이라 친목 심하고 이런 거 좀 별론데 본관은...
-
하..나이는 찼는데 이제
-
솔직히 글 이해 이런거 별로 의미없었다고 생각함
-
마라톤대회 우승한 사람들이 파워리프팅 코치하는데 시급을 5만원씩 받아먹음
-
갑민가 쌩독해 ㅅㅂ
-
트럼프 "내주 다수 국가에 상호관세 부과 발표"…韓도 포함되나(종합) 1
美日 정상회담서 日총리에 "무역균형 이뤄야…관세는 적자 해결 옵션" "자동차 관세도...
-
시대 방학 동안 수특 수완 싹 다 풀고 9평 치고도 풀고 재종 쌤 이비에스 자료도...
-
최강 삼성 승리 하리라~ 과외비 올인 할 준비 완료 엄마 아빠가 삼성팬이라 태어날...
-
[단독] 무안 로컬라이저 설계사 경찰 조사…‘제주항공 참사’ 수사 확대 [세상&] 1
경찰, ‘제주항공 참사’ 관계자 20여명 조사 ‘CVR’ 요청 등 공조 수사도...
-
런치 할인하길래 형님이 주신 기프티콘으로 가격 쌀먹했습니다 잘먹겠습니다
-
수능 전날 갑자기 조웅전 정을선전 중 하나 나올 것 같아서 수능 당일 아침에도 시작...
-
ㅋㅋㅋ
-
인강추천 3
기출에 맞게 사고나 행동 교정해주는 인강 추천 좀 물리, 지구
-
수학도 계산벅벅메타 10
EBS연계 체감도 엄청 크게 되는거같고 계산량도 엄청나게 늘렸고 걍 깡으로...
-
추론 문제에 대처 가능한지는 이해의 여부지 스킬의 여부가 아님 그런데 모든 일이...
-
과외 시급 질문 2
서울대 물교과, 연세대 물리학과 최초합 타이틀로 걸어놓고 국어 수학 영어 과학 과외...
-
트럼프 “한반도 안전과 안정 위해 헌신”...미일정상 회담서 “북한 완전한 비핵화 노력” 1
[파이낸셜뉴스] 도널드 트럼프 미국 대통령이 7일(현지시간) 미일 정상회담에서...
-
근데 안할 이유가 없음 쉬운길 빙빙 돌아가는거
-
몇번 팔걷었더니 손목 다늘어났네 하
-
뭔가 24학년도 까지와 25학년도의 문제느낌이라고해야되나 이게 많이 달라짐...
-
ㄹㅇ
-
가격 ㄱㅊ은게 호걈이네
-
정답:77점 수령자: ㅁㄱㅁㄱ, ㅅㄷㄹㄹ 축하합니 다람쥐
-
님들향수뮤ㅓ씁? 1
??
-
우원식, 시진핑에 방한 요청…“비자 면제 관련 조치 검토” 2
[베이징=이데일리 이명철 특파원] 시진핑 중국 국가주석을 만난 우원식 국회의장이...
-
나만 고양이 없지
-
난 요새 이게 가장 고득점의 핵심이라고 봄(이건 제 개인 의견임) 독서가 난이도가...
-
작년에 사탐런 바이럴하던 모 네임드가 수능전까지 원장연한테 뒤지게 맞았는데 수능날...
-
매 년 피해자가 발생하는데 왜 안바꾸지 미인증표본 삭제하기 예상컷 삭제하기 이거...
-
유니스트 반도체 500.9 지스트 무학과 470.82 디지스트 무학과 500.91...
-
개념의 나비효과 대체할만한게있음??? 아님 다른교재랑 비교불가라 국어노베면 무조건 들어야함???
-
아.....그저..... 인생 자체가 억까다!
세줄요약좀
1. 멋진 대화를 하고 있는 사람들 대화에 끼고 싶다
2. 대화에 끼려면 그 사람들이 무슨 말을 하는지 이해해야 한다
3. 따라서 그들의 대화 중에 나오는 용어들을 먼저 알아볼까 고민중이다