Whitehead Torsion
게시글 주소: https://orbi.kr/00071714315
Motivation: "그들의 대화" 에서 최근에 나오는 핵심 용어들 중 하나가 Whitehead torsion이라는 것인데, 이러한 것을 고려하는 이유에 대해서 먼저 설명하기로. 모든 것의 기원은 소위 "cobordism theory"에 기반을 함: Let $M$ and $N$ be smooth closed manifolds of dimension $n$. An \textit{$h$-cobordism} from $M$ to $N$ is a compact smooth manifold $B$ of dimension $(n+1)$ with boundary $\partial B \cong M\coprod N$ having the property that the inclusion maps from $M$ and $N$ to $B$ are homotopy equivalences. If $n\geq 5$ and the manifold $M$ is simply connected, then the Smale's $h$-cobordism theorem says that $B$ is diffeomorphic to a product $M\times [0,1]$ (and, in particular, $M$ is diffeomorphic to $N$).
다시 말해서, cobordism은 두 다양체 M,N을 자연스럽게 interpolate하는 것을 말함. 여기서 $h$는 homotopy를 말하고, 그 이유는 up to homotopy로 interpolate을 했기 때문. 5차원 이상에서는 이것이 어떤 면에서 ``trivial'' 하다는 것을 말함. Smale이 이 정리를 이용해서 5차원 이상에서의 Poincare Conjecture를 풀었음 (예에에전에 한번 이거 관련 글 썼던 것 같음).
이러한 좋은 이유에 의해서 cobordism theory를 not simply connected인 경우에는 어떻게 사용할 수 있을까 사람들이 고심을 하고, 그렇게 나온 것이 s-cobordism theory임. 이것을 좀 더 자세히 설명하기 위해서는 몇몇 정의들이 필요함:
Definition. Let $X$ be a finite simplicial complex. Suppose that there is a simplex $\sigma\subset X$ containing a face $\sigma_0\subset\sigma$ such that $\sigma$ is not contained in any larger simplex of $X$, and $\sigma_0$ is not contained in any larger simplex other than $\sigma$. Let $Y\subset X$ be the subcomplex obtained by removing the interiors of $\sigma$ and $\sigma_0$. Then the inclusion $\iota:Y\hookrightarrow X$ is a homotopy equivalence. In this situation, we will say that $\iota$ is an \textit{elementary expansion}. Note that $Y$ is a retract of $X$; a retraction $X$ onto $Y$ will be called the \textit{elementary collapse}.
Definition. Let $f:Y\to X$ be a map between finite simplicial complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition of elementary expansions and elementary collapses.
모든 compact smooth manifold는 PL 이기 때문에 finite simplicial complex structure를 갖게 됨. 따라서, smooth manifold의 경우에는 simple homotopy equivalence라는 것을 이야기할 수 있음.
s-cobordism theorem. Let $B$ be an $h$-cobordism theorem between smooth manifolds $M$ and $N$ of dimension $\geq 5$. Then $B$ is diffeomorphic to a product $M\times[0,1]$ if and only if the inclusion map $M\hookrightarrow B$ is a simple homotopy equivalence.
이제 이 s-cobordism theorem을 적용하기 위해서는 언제 homotopy equivalence of smooth manifolds $f:X\to Y$가 simple homotopy equivalence인지 알아내는 것. 이걸 Whitehead가 해결했는데, 각각의 homotopy equivalence $f:X\to Y$에 대해서, 어떤 algebraic invariant $\tau(f)$ called the \textit{Whitehead torsion} of $f$ 라고 하고, 이 torsion은 \textit{Whitehead group} of $X$라고 불리는 특정 abelian group $\mathrm{Wh}(X)$에 존재함. 이 torsion이 정확히 simple homotopy equivalence의 obtruction임. 다시 말해서, $\tau(f)$ vanishes if and only if $f$ is a simple homotopy equivalence.
이제 이 Whitehead torsion이 구체적으로 무엇인지 알아보기로. 먼저 앞에서 정의한 simple homotopy equivalence의 정의를 조금 더 구체적으로 적어봄.
Construction 1. Let $D^n$ denote the closed unit ball of dimension $n$ and let $S^{n-1} = \partial D^n$ denote its boundary. We will regard $S^{n-1}$ as decomposed into hemispheres $S^{n-1}_-$ and $S^{n-1}_+$ which meet along the ``equator'' $S^{n-2} = S^{n-1}_-\cap S^{n-1}_+$.
Let $Y$ be a CW complex equipped with a map $f:(S^{n-1}_-,S^{n-2})\to (Y^{n-1},Y^{n-2})$. Then the pushout $Y\coprod_{S^{n-1}_-}D^n$ has the structure of a CW complex which is obtained from $Y$ by adding two more cells: an $(n-1)$-cell given by the image of the interior of $S^{n-1}_+$ (attached via the map $f|_{S^{n-2}}:S^{n-2}\to Y^{n-2}$) and an $n$-cell given by the image of the interior of $D^n$ attached via the map
$$S^{n-1} = S^{n-1}_-\coprod_{S^{n-2}}S^{n-1}_+\to Y^{n-1}\coprod_{S^{n-2}}S^{n-1}_+.$$
In this case, we will refer to the CW complex $Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expension} of $Y$, and to the inclusion map $Y\hookrightarrow Y\coprod_{S^{n-1}_-}D^n$ as an \textit{elementary expansion}.
The hemisphere $S^{n-1}_-\subset D^n$ is a (deformation) retract of $D^n$. Composition with any retraction induces a (celluler) $c:Y\coprod_{S^{n-1}_-}D^n\to Y$, which we will refer to as an \textit{elementary collapse}. Note that the homotopy class of $c$ does not depend on the choice of retraction $D^n\to S^{n-1}_-$.
Definition 2. Let $f:X\to Y$ be a map of CW complexes. We will say that $f$ is a \textit{simple homotopy equivalence} if it is homotopic to a finite composition
$$X = X_0\xrightarrow{f_1}X_1\xrightarrow{f_2}X_2\to\cdots\xrightarrow{f_n}X_n = Y,$$
where each $f_i$ is either an elementary expansion or an elementary collapse.
We say that two finite CW complexes are \textit{simple homotopy equivalent} if there exists a simple homotopy equivalence between them.
Example. Let $X$ and $Y$ be finite CW complexes and let $f:X\to Y$ be a continuous map. We let $M(f) = (X\times[0,1])\coprod_{X\times\{1\}}Y$ denote the mapping cylinder of $f$. If $f$ is a celluler map, then we can regard $M(f)$ as a finite CW complex (taking the cells of $M(f)$ to be the cells of $Y$ together with cells of the form $e\times\{0\}$ and $e\times(0,1)$, where $e$ is a cell of $X$). The inclusion $Y\hookrightarrow M(f)$ is always a simple homotopy equivalence: in fact, it can be obtained by a finite sequence of elementary expansions which simultaneously add pairs of cells $e\times\{0\}$ and $e\times(0,1)$ (where we add cells in order of increasing dimension).
Note that the map $f$ is homotopic to a composition
$$X\simeq X\times\{0\}\xrightarrow{\iota}M(f)\xrightarrow{r}Y,$$
where $r$ is the canonical retraction from $M(f)$ onto $Y$ (which can be obtained by composing a finite sequence elementary collapses). It follows that $f$ is a simple homotopy equivalence if and only if $\iota$ is a simple homotopy equivalence. Consequently, when we are studying the question of whether or not some map $f$ is a simple homotopy equivalence, there is no real loss of generality in assuming that $f$ is the inclusion of a subcomplex.
Rmk. Celluler approximation theorem says that any continuous map between CW complexes can be homotoped to be a celluler map. In particular, the above example holds for general continuous map $f$.
Simple homotopy equivalence는 homotopy equivalence인 것은 눈으로 쉽게 확인할 수 있다. s-cobordism theorem을 적용하기 위해서, 우리는 그 역이 필요하다.
Question. Let $f:X\to Y$ be a homotopy equivalence between finite CW complexes. Is $f$ a simple homotopy equivalence? If not, how can we tell?
앞서 말했듯이, 이 질문에 대한 대답은 정확히 Whitehead torsion. 이걸 만들기 위해서 먼저 몇몇 정의들이 필요함. 지금까지는 상당히 자명한 것들만 나왔는데 지금부터는 약간 익숙치 않은 것들이 등장하기 시작함.
Definition. Let $R$ be a ring (not necessarily commutative). For each integer $n\geq 0$, we let $\mathrm{GL}_n(R)$ denote the group of automorphisms of $R^n$ as a right $R$-module. Every automorphism $\alpha$ of $R^n$ extends to an automorphism $\alpha\oplus 1_R$ of $R^{n+1}$; this construction yields inclusions
$$\mathrm{GL}_1(R)\hookrightarrow\mathrm{GL}_2(R)\hookrightarrow\mathrm{GL}_3(R)\hookrightarrow\cdots.$$
We let $\mathrm{GL}_\infty(R)$ denote the direct limit of this sequence, and we define $K_1(R)$ to be the abelianization of $\mathrm{GL}_{\infty}(R)$.
Remark. 자 이 construction이 뭔가 natural 하면서도, 한편으로는 좀 어색한데, 만약 $R$이 commutative ring이라면, determinant function
$$\det:\mathrm{GL}_n(R)\to R^\times$$
이 group homomorphism을 줌. 자명히 det은 위의 direct system과 compatible 하기 때문에, direct limit으로 pass가 가능하고, $\det:K_1(R)\to R^\times$ 라는 group homomorphism을 induce함. 만약 $R$이 field 이거나 $\Bbb Z$ 라면, 이 det은 isomorphism이라는 것을 알 수 있음. (하지만 우리의 경우에 $R$은 group ring $\Bbb ZG$라 이 경우는 아님.)
Let $R$ be a ring. A \textit{based chain complex over $R$} is a bounded chain complex of $R$-modules
$$\cdots F_n\xrightarrow{d}F_{n-1}\xrightarrow{d}F_{n-2}\to\cdots,$$
together with a choice of unordered basis for each $F_m$ (so that each $F_m$ is a free $R$-module). In this case, we let $\chi(F_\ast)$ denote the sum $\sum(-1)^mr_m$, where $r_m$ denotes the cardinality of the (chosen) basis of $F_m$. We will refer to $\chi(F_\ast)$ as the \textit{Euler characteristic} of $(F_\ast,d)$.
Remark. If $R$ is a nonzero commutative ring, then the Euler characteristic $\chi(F_\ast)$ is independent of the choice of basis of the modules $F_\ast$. For a general noncommutative ring $R$, this need not be the case.
Let $(F_\ast,d)$ be a based chain complex over $R$ which is \textit{acyclic}, i.e., the homology of $(F_\ast,d)$ vanishes. Since each $F_m$ is a free $R$-module, it then follows that the identity map $1:F_\ast\to F_\ast$ is chain homotopic to zero, i.e., there exists a map $h:F_\ast\to F_{\ast+1}$ satisfying $dh+hd = 1$. We let $F_{\text{even}}:=\bigoplus_n F_{2n}$ and $F_{\text{odd}}:=\bigoplus_{n}F_{2n+1}$.
Lemma. In the above setting, the map $d+h:F_{\text{even}}\to F_{\text{odd}}$ is an isomorphism. $\square$
The specification of a basis for each $F_m$ determines isomorphisms
$$F_{\text{even}}\simeq R^a,\quad F_{\text{odd}}\simeq R^b$$
for some integers $a,b\geq 0$, which are well-defined up to the action of permutation matrices.
Definition. Let $\tilde{K}_1(R)$ denote the quotient of $K_1(R)$ by the subgroup $\langle \pm 1\rangle$. If $(F_\ast,d)$ is an acyclic based complex with $\chi(F_\ast) = 0$, we define the \textit{torsion} of $(F_\ast,d)$ to be the image of $d+h\in\mathrm{GL}_a(R)$ under the map $\mathrm{GL}_a(R)\to\mathrm{GL}_\infty(R)\to\tilde{K}_1(R)$. It can be shown that this definition does not depend on the ordering of the basis elements of $F_\ast$. We will denote the torsion of $(F_\ast,d)$ by $\tau(F_\ast)$.
Lemma. In the above definition, the torsion $\tau(F_\ast)$ is well-defined, i.e., does not depend on the choice of nulhomotopy $h$. $\square$
Definition. Let $f:X_\ast\to Y_\ast$ be a map of chain complexes over a ring $R$. The \textit{mapping cone of $f$} is defined to be the chain complex
$$C(f)_\ast = X_{\ast -1}\oplus Y_\ast$$
with differential $d(x,y) = (-dx,f(x)+dy)$. Note that if $X_\ast$ and $Y_\ast$ are based complexes, then we can regard $C(f)_\ast$ as a based complex (where we fix some convention for how our bases should be ordered).
Suppose that we have $\chi(X_\ast,d) = \chi(Y_\ast,d)$ and that $f$ is a \textit{quasi-isomorphism}, i.e. it induces an isomorphism on homology. Then $\chi(C(f)_\ast,d) = 0$ and $C(f)_\ast$ is acyclic. We define the \textit{torsion of $f$} to be the element $\tau(f) = \tau(C(f)_\ast,d)\in K_1(R)$.
이제 Whitehead torsion을 정의할 것인데, 정의의 동기를 주는 example을 먼저 보기로 함.
Example. Let $(F_\ast,d)$ be an acyclic based complex with $\chi(F_\ast) = 0$, and let $f$ be the identity map from $F_\ast$ to itself. Then the mapping cone $C(f)_\ast$ has an explicit nulhomotopy given by $(x,y)\mapsto(y,0)$. Identify $C(f)_{\text{even}}$ and $C(f)_{\text{odd}}$ with $F_\ast$, so that $d+h$ is given by
$$(x,y)\mapsto (y-dx,x+dy).$$
This map is given by a permutation matrix modulo the filtration by degree, so we have $\tau(f) = 1\in\tilde{K}_1(R)$.
Suppose $X,Y$ are finite CW complexes and that we are given a homotopy equivalence $f:X\to Y$. For simplicity, we assume that $X,Y$ are connected. We fix a base point $x\in X$ and set $G =\pi_1(X,x)\simeq \pi_1(Y,f(x))$. Let $\tilde{Y}$ be a universal cover of $Y$ and let $\tilde{X} = X_{\times_Y}\tilde{Y}$ be the corresponding universal cover of $X$, so that $G$ acts on $\tilde{X}$ and $\tilde{Y}$ by deck transformations. Let us further assume that $f$ is a celluler map. Then $f$ induces a map of cellular chain complexes
$$\lambda:C_\ast(\tilde{X};\Bbb Z)\to C_\ast(\tilde{Y};\Bbb Z).$$
Note that we can regard $C_\ast(\tilde{X},\Bbb Z)$ and $C_\ast(\tilde{Y};\Bbb Z)$ as chain complexes of free $\Bbb Z[G]$-modules, with basis elements in bijection with the cells of $X$ and $Y$ respectively. Since $f$ is a homotopy equivalence, the map $\lambda$ is a quasi-isomorphism. We may therefore consider the torsion $\tau(\lambda)\in\tilde{K}_1(\Bbb Z[G])$. However, it is not well-defined: in order to extract an element of $C_\ast(\tilde{X};\Bbb Z)$ from a cell $e\subset X$, we need to choose a cell of $\tilde{X}$ lying over $e$ (which is ambiguous up to the action of $G$) and an orientation of the cell $e$ (which is ambiguous up to a sign). This motivates the following:
Definition. Let $G$ be a group. The \textit{Whitehead group} $\mathrm{Wh}(G)$ of $G$ is the quotient of $K_1(\Bbb Z[G])$ by elements of the form $[\pm g]$, where $g\in G$.
If $f:X\to Y$ is a celluler homotopy equivalence of connected finite CW complexes, we define the \textit{Whitehead torsion} $\tau(f)\in\mathrm{Wh}(G)$ to be the image in $\mathrm{Wh}(G)$ of the torsion of the induced map
$$\lambda:C_\ast(\tilde{X};\Bbb Z)\to C_\ast(\tilde{Y};\Bbb Z).$$
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
비행기타고 여행을 떠나요~~~
-
올해 정법 1
정법 강사님들 캐스트 들어보면 올해는 분명 표점 정상화 될거다라고 하시는데.....
-
서성한부터는 명백해서 투표 안함 인풋 아웃풋 다양하게 고려해서
-
대가로 여생을 힘들게 살아야 함
-
대학정원 그대론데 수험생수가 4.5만명이나 더 늘어난거면 현역이던 n수던 누구한테나...
-
항상 가족끼리 왔는데 긴장되네요
-
과탐 증원이나 좀 해라 제발... 살려줘...
-
있으신분...............
-
(영어) 2020학년도 6평, 9평, 수능 기출 분석서 2
저번에 약속드린대로 2020학년도 6월, 9월, 수능 기출분석서를 배포합니다....
-
의대 원점으로 인해 15
N수생 등 여러 현상 종합하면 07 건대공대 목표 정시러는 이득? 손해?
-
얘는 진짜 뭐냐;; 12
의대생은 훗날 의사가 될 사람들인데 왜 의사와 국민 건강의 미래를 해끼치는 정책에...
-
설대생이랑....포기해야겠다
-
Internal Server Error
-
전국민 의사 가자 그나저나 24의대들은 25가 나가도 지들만 낙동강 오리알 되니까...
-
여기가 뭔 디씨가 되어가는것 같네
-
솔직히 수학 영역은 범위가 너무 좁긴 했음 엡실론-델타 논법하고 로피탈하고 테일러...
-
수학2등급받으려면 정답률 몇퍼짜리까지 맞춰야하나요? 1
기출보고있는데 이과수학 정답률 몇퍼 정도까지는 방어해야하나요? 30퍼대도 어렵네요...
-
뉴스 안본지 좀 됐는데 탄핵 결정은 언제되노
-
되는거 아닌가 솔직히 실비하고 회사 실손 보험이런거 받으면 의료비로 1년에 나가는돈 많지 않은데
-
엄
-
지2 많이 사랑해주세요
-
전공책 비싸네 2
-
가격이 쎄서 몇번이나 확인을ㅜㅜㅋㅋㅋ 풀어보신분들 좋으셨나요???
-
애초에 안늘었으니까(제발)
-
김범준T 1타 가능?? 14
올해안에 대성1타가능할거같다고 보시나여
-
설대입구쪽인가여?
-
이과형들의 먹이가 되고 싶지 않다….
-
왜 처음 경우에서 갑자기 n<k/4가 되는것인가요..?
-
대머벨
-
정말 답답해 2
-
이번 26 입시 빡세지는 근거로 현역 5만명 증가를 말하던데
-
ㅇ
-
대부분 급간에서 N수 정시충 상당수가 문제한두개도르, 3점실수도르로 "나 xx대...
-
전형별 인원 기존 모집 인원 대로 가겠죠? 갑자기 정시를 타노스 한다든가 그럴일은 설마
-
줄일때 정시일반 줄일거같아서 ㅈ같으면 개추 에휴ㅋㅋㅋㅋㅋㅋ 얼탱없네
-
수학 커리 질문 좀 받아주새요 ?? 현역 때 24223 받았는데 수학이 내신은 매번...
-
전부 정시(일반) 1500명이면 일단 오르비 포만한 시대갤은 대동단결 될듯 ㅋㅋㅋ...
-
오늘 나른나른한거구만
-
아는애가 오늘 올오카1강 들으면서 공부 안하는새끼들 죽이고싶다는데 4
올오카 몇강까지 나옴
-
썸 깨짐... 2
오늘 부산에서 만나기로 했는데 썸남이 엊그제부터 연락이 안되는거야 그리고 어제...
-
반수생이라 강의까지 다 들으면서는 못할거같아서 책으로 독학하면서 기출 병행하려는데...
-
김범준이제슬슬강의안밀리고일타먹으려고하니까바로유퀴즈에나와버리네
-
거기서 인싸되는법 추천 ㄱㄱ
-
나빼고 다들 친구가 있으니 반수를 하는 수밖에…
-
지문이 어렵고 문제가 비교젓 쉬운경우 시간 소모를 최소화 하려면 어떻게 해야 하나요
-
(붕어빵을 먹으며)
-
진짜 어케 강남에 집 구해주고 연구실 자리까지 주냐
-
싯8 올해까지만 유지해달라고
세줄요약좀
1. 멋진 대화를 하고 있는 사람들 대화에 끼고 싶다
2. 대화에 끼려면 그 사람들이 무슨 말을 하는지 이해해야 한다
3. 따라서 그들의 대화 중에 나오는 용어들을 먼저 알아볼까 고민중이다