극한 상쇄 풀이는 오류가 아닙니다
h(x)의 식이 우극한으로 정리된 형태라 복잡하니
g(x+) x g(x+2)로 편하게 바꾸겠습니다 다른 보기는 넘어가고 ㄴ보기만 보겠습니다
h(x)의 연속 여부를 따지고 있습니다. 일단 의심되는 지점으로 1, -1 , -3지점을 잡는건 당연하고 직접 함수식을 적어서 다뤄도 되지만 저는 g(x+) x g(x+2)의 극한식에서 처리했습니다 (두 관점이 정확히 같습니다)
h(x)의 좌극한값을 파악할때는 x값을 정의하는것이 뒤의 우극한을 보내는 것 보다 우선입니다 x를 1보다 작은 값, 좌극한 값으로 이미 정의되어있으니 뒤의 우극한이 붙어있어도 1의 왼쪽의 값을 보는것이 맞습니다.
즉 사진에 첨부된 것 처럼 g((1-)+)의 이중 극한 형태는 결국
g(1-)로 볼 수 있으니 결국 f(1-)와 같습니다 이때 f는 다항함수라는 조건이 있므로 f(1-) =f(1)과 같게 볼 수 있고 이 경우가 흔히 상쇄의 케이스로 말해지는 것 같습니다 이 경우 f(1)=1임을 확정할 수 없으므로 ㄴ 보기는 모순입니다
풀이에 오류가 있다 생각하시는 분은 댓글 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그야 피부상태가 안보이니까.
-
모두 즐거운 설날보내세용
-
Orbi지형T_[점수를높이는5M.Column] Ch3.수학적귀납법'지형도를그리다' 2
[5-Minute Column] "Major Past Math Questions...
-
둘이 비슷한실력인가요?
-
최소 3은 뜬다던데 이거 ㅈㅉㅇㅇ? 근데 3등급은 왜 이렇게 적죠? 이것만하면 다...
-
안녕하세요 이때까지 알바하면서 재수비용 모으느라 2월달부터 재수 제대로 시작할거...
-
그냥 얼굴만 아는 엔데 . . .쪽팔렸음
-
알려줄 사람
-
질문지법을 이용한 양적 연구입니다.
-
방금 친척한테 들었는데 개놀랐네 ㅋㅋ
-
수분감 강의 0
수분감 강의 빠짐없이 다 들어야 하나요? 넘길던데ㅜ
-
걍 텍스트가 더 편한듯.. 국일만 한완수 크로녹스 현자의돌 기파급 이런게 더 이해도...
-
팝콘 맛 추천 받아요 14
-
개쳐망한 이번생을 액막이 삼아서
-
ㅇㅅㅇ
-
수능 전까지 모고에서 비문학을 거의 안 틀리고 문학을 많이 틀렸는데 수능 당일에는...
-
아직 고민중인건데.. 군수생각이 확고했으면 아마 수능 망했다고 담날에 군입대신청하고...
-
ㅈㄱㄴ
-
토익 질문좀용 1
해커스 lc 진단고사 50개중에 39개 맞았는데 어느정도 수준인가요??
-
국민대 합격생을 위한 노크선배 꿀팁 [국민대25][기숙사, 자취방, 고시원] 0
대학커뮤니티 노크에서 선발한 국민대 선배가 오르비에 있는 예비 국민대학생, 국민대...
-
일단 전 살면서 읽은책 다합치면 30개 겨우넘길듯
-
치매노인 된듯 0
환승찍는거 세번 까먹음 죽을게ㅋㅋㅋ
-
다들 사탐 경제 ㄱㄱ?
-
레어사세요 6
레어사세요레어사세요레어사세요레어사세요레어사세요레어사세요레어사세요레어사세요레어사세요레어...
-
아 왜 10 1
번이야
-
화작 미적 화1 생1인데 사탐런 시켜야함?? 충청 지역인재 된다길래 찾아보니 충청은 다 과탐필수네요
-
손톱 긴게 문제가아니라 걍 안이쁨..
-
별눈2 6
-
얼마하려나 용인에 있는걸로 앎
-
ㅋㅂ흐흐흐 4
맛있어
-
후천적인 영향이 크다고 하네요 언어이해 지각추론 작업기억 처리속도 네 가지 영역...
-
안녕하세요. 합격자 후배님들! 저는 인하대 영어영문학과 22학번입니다. 인하대에...
-
과탐하고 싶다 1
능지는 사탐이 딱인대 ㅠㅠ
-
한양대 25학번 아기사자분들을 위한 시간표 짜는 팁 0
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
능지라는거 13
반대로 하면 지능임
-
수학 잘하는 애들은 노력하는게 보이는데 국어는 가끔 공부 ㅈㄴ 안 하는데 1등급...
-
국가가 뭐해줬다고 몇십퍼씩 뜯어가냐 참 억울하거든요
-
얼버기 3
낮잠잠
-
솔직히 농어촌 5
반대로 말하면 촌어농임
-
이미 인하의 등록하긴 했는데 잘한거 맞겠죠? 경기도 살아서요
-
킹댕이 승 8
-
문학 고자 0
안녕하세요 선생님분들 현재 김승리T 커리 쭉 따라가고 있습니다. 매월승리랑 풀어보면...
-
머리가 멍청하다는 생각이 들면 검사 오류였던건가 ㅠ
-
아 왜 10 1
번이야
-
댓 남겨주시면 맞팔해요
-
지역인재라는거 2
반대로 말하면 재인역지임
-
별눈 4
-
사탐런 꿀팁 2
윤리는 하지 말것
아니요 정확히는 그 개념자체가 틀린거에요
이 문제푸는게 중요하기보단
그래서 다른 문제 나오면 틀릴수있어요
본문에 나온 부분 중 개념 오류는 없다고 생각하는데 어느 부분이 틀렸다고 생각하시나요??
위에서 쓰신 풀이는 아무 문제도 없어요
문제는 “g((1-)+)” (=lim (x->1-) lim (t->x+) g(t)) = g(1)이 다항함수가 아닌 케이스에서 일반적으로 성립하지는 않는다는 거죠
극단적으로, g(x) = 2(x-1) sin(1/(x-1)) (x<1, x는 무리수), (x-1) sin (1/(x-1)) (x<1, x는 유리수), 0 (x>=1)에 본문의 논리를 적용하려 한다면, g((1-)+) = lim (x->1-) g(x)조차 성립하지 않아요(첫 번째 극한은 정의되지 않지만, 두 번째 극한은 정의됨)
극한상쇄 풀이가 욕먹는 건 마치 항상 성립하는 내용처럼 말해서 그런 거에요
예를 들어 방정식 dy/dx = 1, y(0)=0을 y에 대해서 풀 때, 위아래의 d를 ‘약분‘해서 y/x=1, y=x와 같이 얻는다면 답은 맞고 풀이도 ‘미분계수=기울기‘라는 점에 집중하면 어느정도 정당화가 가능하지만, dy/dx = x같은 거에서는 성립하지 않으니까 바람직한 풀이는 아니겠죠
저는 2024 6월 미적분 28번과 같은 상황이라 생각하는데요 그 문제 역시 특정 풀이법 (f(x)를 구하는 것 등)이 문제 조건이 조금만 바뀌었어도 바람직한 풀이가 아니라는 논란이 있었죠
고등 수학과정에서 출제진들이 바라던 풀이는 딱 본문정도라고 저는 생각합니다
풀이는 문제에서 주어진 조건 상황하에서 성립하면 문제가 없는거지 굳이 문제에서 나오지 않은 상황을 생각하여 문제삼는게 필요가 없다는게 제 입장입니다.
조금 더 예시를 들어보면
당장 우리가 도함수의 극한의 존재여부로 함수 f(x)의 미분가능성을 따지는게 (연속임이 전제 되었을 경우)
수학 2 문제에서는 전혀 잘못된 것이 아니잖아요?
그런데 우리가 굳이 xsin(1/x)과 같은 무한 진동함수의 반례를 생각하면서 도함수의 극한을 쓰는게 옳지 않다!
라고 하지는 않습니다
실제로 님이 문제삼으시는 문제의 형태가 나왔다면 상쇄라는 해당 풀이는 애초에 나오지 않았다는게 제 입장입니다
저건 아예 글의 기본적 가정조차 성립하지 않는 극단적인 케이스로 잡은 거고, 그냥 g(x)=x (x<1), g(x)=0 (x>=1)만 들고 와도 g((1-)+)=g(1)이 일반적으로 성립하지 않는 건 알 수 있어요
진동 발산의 케이스는 g((1-)+)=g(1-)조차 성립하지 않는 걸 보여주려고 제시한 거에요
그 상황은 다른 상황을 제시하셨으니까요
상쇄가 가능했던 "이유"는 수능 14번 문제의 경우에는
f(x)가 다항함수라 좌극한 값이 곧 함숫값으로 확정이 되성 가능했던 거죠
저 상황에서는 잡으신 함수에 우극한을 취해봤자 그대로인 함수가 되는거니 당연히 g((1-)+)는 함숫값과 같지 않는거니 저런 상황이었다면 애초에 상쇄 풀이가 나오지 않았다는게 제 생각입니다
앞에서 말했던 거랑도 겹치는데, “현우진은 극한상쇄, 즉 g((1-)+)=g(1)과 같은 식이 항상 성립한다고 주장한 게 아니라, 그 문제의 상황에서만 성립한다고 말한 거다“라고 밀고 나간다면, 해설에서 답이 틀린 것도 아니니까 ‘해설에 오류가 없다‘고 말할 수는 있어요
문제는, 글쓴이님과 다르게(그리고 현우진 강사님의 의도와는 별개로) 대부분의 학생들은 저 극한상쇄를 항상, 또는 최소한 문제의 상황보다 훨신 넓은 범주에서 성립하는 걸로 이해했다는 거죠. 그래서 오개념 논란이 생긴 거고요.
수학은 객관성의 과목이지만, 결국 자연어에는 애매함이 있을 수밖에 없어요. 하지만 현우진 강사님의 말을 객관적으로 해석해서 해당 풀이가 어떤 의미였는지를 알 수는 없어도, 아직도 231114의 수분감 해설을 듣고 오개념을 가진 채 질문하는 학생들이 있는 걸 보면 바람직하지 못한 해설이라고는 할 수 있을 것 같네요.