킬러 3문제 먹방
-음.. 시작부터 개같은 게 나왔구만!
-먼저 주어진 함수 f(x)의 개형을 그려보자. 저걸 직접 적분하는 건 미친 짓이니까 개형으로 추론을 해보자는 거지. 이때 y<0의 두 구간의 넓이를 각각 A라고 두자. 우함수니까 넓이는 서로 같아.
-g(x)가 f(x)의 적분에 대한 식으로 나타나있네. 먼저 a가 왼쪽으로 멀리 떨어져있을 때를 보자. g(x)의 그래프가 x축과 만나는 점이 2개가 돼야 하는데 그렇지 않지? Pass.
-특정 구간의 넓이가 저 그림처럼 2A일 때의 a를 보자. 이땐 조건에 부합하네. 그러면 이때의 a가 바로 α1임을 알 수 있어. Check!
-또한 a가 α1일 때 극소를 갖는 곳이 x=1이라고 했으니 p=1. 따라서 c=ln2.
-a=-1일 때를 보자. α1<a<-1 일 땐 어차피 안 돼. 그러면 교점이 3개가 되거든. 이건 자기 머릿속으로 상상해서 그려보도록 하고. 아무튼 a=-1이라면 조건에 맞게 g(x)가 그려짐을 알 수 있어. 즉 이때의 a가 바로 α2!
-a=0이라면 교점이 3개가 되므로 안 돼!
-a=1이면 교점이 2개가 되는군! 이때의 a는 α3야!
-a가 우측 상단 그림과 같이 특정 구간의 넓이가 2A가 되는 곳에 있다면 g(x)는 역시 조건에 맞게 그려지지. 이때 a는 α4.
-a를 오른쪽으로 더 멀리 잡아보면 여기서부터 g(x) 그래프가 조건에 맞지 않게 그려짐을 알 수 있어.
-그러면 결국 조건을 만족하는 a의 개수는 m=4야.
-(나) 조건을 보자. (나)는 a=α1일 때 만족한다는 것에 주의해! 그림처럼 f(x)는 우함수고 넓이 표시도 저렇게 y축 대칭을 이루므로 α1=-α4이고, 각 부분의 넓이를 A에 대해 표현했으니 이걸 가지고 분석해보면....
-드디어 알아냈다. 저 g(x)에 관한 적분은 부분적분을 활용해야 했어. g(α4), g(-α4)는 g(x)의 개형을 참고하면 바로 나와. 각각 2A, 0이지. 그리고 g(x)가 f(x)에 관한 적분이므로 g'(x)=f(x)고, xf(x)=xln(x4+1)-xln2는 기함수라는 걸 알아야 해.
-이것이 문제 정답 여부를 결정한다. 기함수를 -a, a까지 적분한 값은 0이란 거 알지? 이걸 이용하면 결과가 간단히 나온다. 즉, k=2.
-최종 답은 16.
-먼저 (나)의 식은 모든 실수 x에 대해 성립한다고 했으니 x=0, -a를 집어넣어보자. 왜 하필 0, -a냐면, f(x)가 우함수이고, 우함수는 y축 대칭이므로 0부터 a까지 적분한 값과 -a부터 0까지 적분한 값은 서로 같을 것 아냐? 그걸 이용하고자, 0, -a를 집어넣은 거지.
-a를 구해보자. a의 범위가 문제에 주어져 있으므로 이것까지 고려하면 a의 값이 나오게 된다.
-자, 이제 (나)의 식을 미분하고, 한 번 더 미분해보자. 이제 주어진 닫힌 구간 [0, a/2]에서의 함수 f(x)를 활용해볼 거야.
-(나)를 한 번만 미분한 식을 활용해보자. f(x)가 우함수임을 응용하기 위하여 두 번째 식에 있는 x+5π/3이 -x와 같아지도록 하는 x의 값 -5π/6을 두 번째 식에 대입해볼 거야. 근데 쓸모없는 시도였네. f(x)=f(-x)니까...
-그러면 (나)를 두 번 미분한 식을 사용하자. 똑같이 x=-5π/6을 대입하면 f'(x)=-f'(-x)이므로 f'(5π/6)을 얻을 수 있고, 5π/6은 주어진 닫힌 구간 내에 있으니 이 구간 내의 함수의 도함수의 식에 대입해서 정리하면 b, c에 관한 식을 얻을 수가 있지!
-다음으로 (나)의 식에 x=-a/2를 대입해보자. 그리고 닫힌 구간 [0, a/2]에서의 함수를 0부터 a/2까지 적분해보자. 그 둘을 우함수의 성질을 생각해서 비교해보자. 그러면 b, c에 관한 또 다른 식이 나오게 된다.
-그럼 b, c의 값들을 구할 수 있어!
-최종 답은 83!!!
-먼저 단순하게 구할 수 있는 것부터 구해. g(1)의 값을 통해 f(1)을 찾아내고, f(x)가 x=a에서 극대라고 하니 f'(a)=0임을 인지하고.
-자! 그 다음은 "뭐 어쩌라고"라고 생각하지 말고, 먼저 (나)조건부터 살펴보자. f(a)가 0인지, 아닌지에 따라 경우가 나눠지게 돼. 0이 아니면 그냥 g'(x)에 a를 집어넣으면 되는 반면, f(a)가 0이라면 극한을 통해서 g'(a)를 구해야지. 어차피 g(x)는 실수 전체에서 미분가능하다고 했으니 x=a에서의 g'(x)의 극한값은 결국 g'(a)랑 같잖아.
-먼저 f(a)=0일 때야. 이때 각 식이 극한을 적용했을 때 수렴할 수 있게 되는지 확인만 하면 돼. 먼저 우측 식. 분자는 f'(a)=0이므로 0으로 가고, 분모는 f(a)=0이니 0으로 가지? 0/0꼴이니 OK.
-다음은 좌측 식. 분모에서 f(a)=0이므로 분모에서 sin(πa)=0이어야 하네. a>0이라고 문제에서 주어져 있으니 a는 결국 자연수라는 소리잖아?
-f(a)≠0일 땐 그냥 g'(x)에 x=a를 집어넣으면 돼. 우측 식은 0이란 걸 금방 알 수 있고, 좌측 식에서는 분모에서 f(a)≠0이니 분자에서 sin(πa)=0이어야 하는군. 어라? 이때도 a는 자연수여야 하네.
-a가 자연수라는 것도 알았어. (나) 분석은 잠시 중단하고, (가) 조건을 봐보자. 먼저 g'(0). 만약 f(0)이 0이 아니라면 g'(x)에 x=0을 대입했을 때 나오는 g'(0)=0이 되는데, 이는 (가)와 모순이지? 즉, f(0)=0이야.
-g'(2a). f(2a)가 0이 아니라면 g'(2a)는 0이란 걸 계산을 통해 알 수 있어. 이때 계산 과정에서 a는 자연수이므로 2a는 짝수라는 걸 알아야 해. 그러나 g'(2a)=0은 (가)와 모순되지. 따라서 f(2a)=0.
-f(0)=f(2a)=0이라는 것도 얻었겠다, 이제 다시 (나)를 분석해보자고. (나)에서 f(a)가 0이냐, 아니냐에 따라 경우가 나눠졌었지. 먼저 f(a)=0일 때를 봐볼까. 그러면 g(a)는 x=a에서의 g(x)의 극한값과 같으니(g(x)가 실수 전체의 집합에서 미분가능하므로) 식은 저 중앙의 빨간 식으로 표현돼. f(x)의 식을 저 파란 식으로 표현하고, f'(a)=0임을 이용하면 f(x)를 단 2개의 미지수 p, a로 표현된(x 제외) 식으로 나타낼 수 있어.
-f(x)는 x=a에서 극대라고 하니 p는 양수이지.
-자, 이제 아까 그 극한식을 계산해보자. 이때 t=x-a로 둬서 극한식을 변형해야 해. 그리고 a는 자연수니 sin(πt+πa)=±sin(πt)인데 제곱하면 어차피 +가 되니 상관없어. 그러나 제곱하지 않은 1+cos(πt+πa)는 얘기가 달라져. 일단 저대로 두도록 하자.
-여기서 a가 홀수면 분모가 0이 되는 대참사가 벌어지므로 a는 무조건 짝수여야 해. 그러면 pa2의 값을 구할 수 있어!
-아까 p는 양수고, a는 자연수 중 짝수라고 했잖아. 그럼 pa2>0이라는 소리인데, -128/7이라고...? 뭔가 이상하지? 이 결과가 나오는 경우는 f(a)=0일 때였어. 그 말인즉슨, f(a)=0인 경우는?
-f(a)가 0이 아니라는 소리네. f(0)=f(2a)=0, f'(a)=0임을 이용해 f(x)의 식을 p, a, c, d에 대해서 세우고, 중앙에 세운 빨간 극한식도 참고해서 접근해보자. 그러면 c=-2a임을 알 수 있지.
-g(0)의 극한식을 볼 거야. 식을 정리하다 보면 분모에는 x2이 있어야 하므로 d=0인 걸 알 수 있어.
-이제 극한을 풀면 pa2의 값이 나오게 돼.
-c, d, pa2도 구했겠다, f(x)의 식을 p, a에 대해서 변형시키고, f(1)=7을 통해서 a를 구해보자. 이때 a는 자연수임을 기억해야 해. 그러면 a=4가 나오고 p는 pa2의 값에 의해서 1/7로 나와.
-그럼 f(x)의 식을 다 구한 셈이지 뭐. g(-1)을 계산하고 정리하면 최종 답은 95!!!!!!!!!!!
-(나)에서 얻은 g(1)=0을 통해 (가)에 대입해서 g(2)를 구하고, g(2)=0임을 통해 다시 (가)에 대입해서 g(3)를 구하다보면... 결국 g(x)의 x 자리에 정수가 들어가면 함숫값이 0임을 확인할 수 있네.
-자, 여기서부터 굉장히 중요한 과정이 시작된다. 먼저 (나)를 미분한 다음 f(x+1)-f(x)=? 꼴로 고쳐. 그리고 (가)의 양변을 ex로 나눠. 이제 두 식에 있는 공통항 e-xg(x)를 소거하면 f(x+1)-f(x)에 대한 식이 보라색 식으로 표현됨을 알 수 있어.
-g(정수)=0임을 이용해보자. n이 정수라고 둬. 그리고 f(x+1)-f(x)=(뭐시기) 의 양변을 n부터 n+1까지 적분해서 정리해보자. 이때 좌변의 1번째 적분식은 치환적분을, 우변의 2번째 적분식은 부분적분을 적용했어. 그러면 맨 아래의 식처럼 매우 간결(?)하게 나오지?
-이제 n이 정수라고 했으므로 n=0, 1, 2, ...를 대입해가면서 파란색 적분식들의 값을 각각 구해보자. 구하다보면 어떤 규칙이 보이는 걸 인지할 수 있어. -자, 이렇게 나타나게 된다. 그럼 게임 끝났지?
-따라서 최종 답은 26.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
커뮤니티에서도 찐따되겠네
-
화1처럼 한개틀리면 2등급나오고 그런상황인가요...???
-
남자 175/64 어떰 20
살쪘나
-
못생긴건 서럽다 0
얼른 돈모아서 얼굴 갈아야지
-
잠이 안오네 조졌네 밤새는건 에반데..
-
근데 메인글 3
https://orbi.kr/00071417475/%EC%A1%B4%EC%98%88-...
-
그래서 단 기만 대신 ㅋㅋㅋㅋㅋㅋㅋ침
-
땅개임 암거나 ㄱㄱ
-
빨주노초 아머 레전 팜노스
-
ㅇㄸ?
-
어떰? 제발… 원래 으냥 현강 들음 작년부터 쭉 인강으로 독서만 투커리 타고 싶은데...
-
내신 2.6x 지방일반고(표편 10중반)다니고 잇습니다. 원래 생명에 관심많아...
-
내가 국어 분석할때도(일단 분석자체를 잘 안하는건 둘째치고) 남들처럼 문장단위로...
-
씨발 6
또졌어
-
대학이 애매지지는 것 같다… 영어 1에 과목별로 백분위87~95 쫙 분포하는데 정시...
-
ㅇㅈ 13
-
ㅏ이게 재밌구나 (진짜 재밌어서 한 말)
-
이게 현실적인 반응이야 11
너네가잘생긴거야ㅠㅠ
-
아무질문이나 받음 10
아무질문이나 ㄱㄱ
-
이정도면 노베치고 ㅁㅌㅊ?
-
난 현역때부터 김으냥 들엇는데 3모 6에서 6모 3 뜨고 9,10,11모 3 떠서...
-
그냥 자기가 여자였더라면 ㄱㄱ
-
다른애들은걍ㄱㅁ만쳐주잔아왜나한테만팩폭이애
-
2학년까지 총내신 2.9 평반고 하향곡선 국숭세단 붙을지 모르는 내신 중간에...
-
화학과(자연대)에서 전전 or 반도체 복수전공 하는거랑 전전이나 높공을 원전공으로...
-
못봐도아쉽지않음 5
그런거임
-
엌ㅋㅋㅋㅋㅋㅋㅋ 젊게 봐줘서 고맙다...
-
갤러리 ㅇㅈ 10
-
남자랑사귀기 vs 여자랑사귀기
-
미방짤은쓰셈 4
예…너무 막 올리면 그.. 절대네이버에오르비 ㅇㅈ을 검색하지마
-
보고 자존감 충전이나하게
-
"국정원" 뭐임
-
존예 여르비ㅇㅈ 7
Hey 옯삣삐 ㅇㅈ이 아니라서 화난건 알겠어 boy 하지만 this 글을 메인을...
-
오늘도 한 끼 먹었다....나쁜놈들
-
기행 멈추고 성적강박증 좀 줄이고 정신과 약 계속 먹다 보니까 나아진거같음 지금은...
-
이번에 외대 지원했고 최초합할 것 같은데 연고대에 미련 남고 열등감 든다 집안...
-
아기사자의 고민, 기숙사? 자취? 통학? [기숙사편] 0
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
키168 ㅆㅅㅌㅊ(차은우급은 아님,평균보단 많이 잘생김) 키 185...
-
ㅎㅎㅎ
-
에타가 정확히 이꼬라지임
-
선착순 10명 1명당 1000덕
-
인증글이었는데 11
본 사람이 없네
-
작수 공통 4틀 통통 4틀 작년에도 시발점부터 해서 뉴런 들음 근데 그때는 걍 뭣도...
-
흐흐 사진은 지웠음뇨
-
플래너를 두고와서 대육광천의사진으로 대체합니다
-
근데 내가 장원영이면 남친 안 사귐 내가 제일 잘난데 다 하찮아 보일듯ㅌㅌ
-
ㅇㅈ웨함 15
ㄹㅇ
191029도 풀어주세요
그해 수특과 상당히 비슷하더군요
만화가 2000년대 감성이라 너무 좋네요 ㅋㅋㅋㅋ