수능을 시간 내에 완주하는 방법
2026 The All Preview [250108].pdf
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다.
[출판한 대표 교재]
[저자 소개 및 인증]
[2025, 2026 과탐 공부법 가이드 (Ft. 사탐런)]
수능 생명과학은 타임어택 시험이라 여겨지곤 합니다.
생1, 생2 고난도 자료 해석 자체에는 다소 시간이 걸리기에
준킬러(수리 추론), 비킬러에서 시간을 줄이는 게 중요합니다.
[비킬러]
https://youtube.com/shorts/sk74UtUfp4I?si=KsExplSki0hEl3JN
[준킬러]
https://youtu.be/uJDAph14lR8?si=hASRSHr1njhYdwpZ
[최고난도]
https://youtu.be/G_VfEwl2TAk?si=cutnAwwE97-1BkWq
곧 표지 관련 소식으로 찾아뵐 듯 합니다
항상 글 읽어주셔서 감사합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅂㅇㅇ랑은 저거보다 더 스윗하게 。◕‿◕。
-
???
-
상대방 글 말고 프로필 통해서도 보낼수 있다는데 어떻게 보내는건가요?
-
어그로성 제목이지만 놀랍게도 팩트랍니다 댄스스포츠 라는 교양을 들었어요 그치만...
-
쟤네들도 2월되면 떠나겠지 또 늙은이들만 남을거야 떼잉
-
빅뱅 거짓말에서 8
넌 어딨나요 널 부르는 습관도 이부분 이상하게 기억에 남네
-
차라리 고대 공대를 선택하겠으 그것 말고도 인설약 붙으면 성불함 ㅂㅂ
-
사례가 이거 하나밖에 없긴 한데 남자한테도 저런 말투 씀요 진짜 ㄱㅇ같아보여요...?
-
ㅈㄱㄴ
-
컨설팅 좆구데기론 <- 이거 대치동에서 한 번 불어야됨 ㅇㅇ 6
누가 어디서 어떻게 시작된건진 모르겠는데 컨설팅이라는게 원래 씹스캠임 ㅇㅇ 원래...
-
카톡 5
나보다 빨리 읽는 사람 읎다 카톡 개 빨리 읽는다리 물론 여러곳에서 너무 한번에 오면 좀 느려짐
-
어떤 미친놈이 내 레어 사가서 다시 빼와야함
-
응
-
수요가 없으려나
-
동기들의 특정을 피할 수 없어 너무무서워
-
과에서 뭐배우는지 전혀 모르는 상태로 들어온사람 엄청 많음 보통 그런 케이스 중...
-
국잘수못들 모아놨으니까 그래도 할만하지않을까…?
-
오늘 하루 2
행복하길..
-
젊은 우리 7
나이테는 잘 보이지 않고
-
사람들이 지적하는 내용에 대해서는 대답 전부 회피하면서 나는 어쩔수 없었다~나는...
-
미안해 20
고멘..
-
평가원 고전만 해서 복잡한 고전시가 해석 ㅈ도 안되네 5
큰일났다 어떡하지 고1고2게 더 어렵네;;;
-
그냥 살라가 따로 없음
-
건강검진 받은 후로 계속 이사를 다녀도 자꾸 똑같은 사람을 마주친다는 의뢰받고...
-
1. 올해 입시는 의대 증원부터 시작해서 스노우볼이 이따시만하게 구른 가히 이례적인...
-
가슴이 너무 아픕니다. 누군가에겐 20대의 소중한 1년이 투자된 결실인데 오르비에서...
-
1. 이명학 신택스 고2모고 3등급이 들을만 한가요? 일리는 들었습니다 2....
-
술먹으러왔는데 1
음악이 너무 시끄러워..
-
3시 전에만 자면돼..
-
바르고 나면 구내염 자리가 더 이상 아프진 않은데 감각이 사라진 게 자꾸 신경쓰여서...
-
이걸보고 모 커뮤에서 만들어낸 짤
-
외대 vs 시립 22
차피 원서 전부 극극안정으로 넣어서 외대랑 시립대 중에 선택해야하는데 개인적 선호...
-
그냥 내일 할까 15
오늘만 날이 아니잖아
-
오르비 6
노잼
-
바이바이 11
공부할게 진짜
-
차단 9
-한 등불이 하나 비인 하늘에 걸려 있다.
-
원서 지손으로 써봤으면 상황 자체보단 지금 커뮤니케이션이 중점인데 뭔 사후적으로...
-
아. 5
뺏고싶은 레어 생겻는데 덕코 다 썻네
-
흠..
-
그런 ㄱㅇ같은 다정함 (웅, 쟈기야) 말고 그냥 말 한마디 해도 따듯하게 해주는...
-
항상 감사하다
-
솔직히 수업 참여도도 제가 받은 학생 중 제일 떨어지는데 일단은 과제에 관해서만...
-
자야지 6
자야지 자야지 자야지 자야지 자야지 자야지 자야지 자야지 자야지 자야지 자야지...
-
제 3~4 센터백으로 쓴다 안쓴다
-
세종런이란? 자교 학식이 맛없음을 인정하고 옆학교 학식을 도식(盜食)하러 가는...
-
아 너무 졸려 1
-
법조계 사람들은 다 저렇게 말하는건가 댓글은 많은데 해명된건 하나도없네 서강대 인문...
-
변한 건 없니 3
날 웃게 했던 예전 그 말투도 여전히 그대로니
-
인생을 베팅
혀누쌤도 분수형태 근수축에서 유리함수 수렴성 이용한 풀이 설명하시나요??
https://youtu.be/1W6xfg_knd8?si=efQgBEzw-L8ZRjz4
이거 말씀하시나요!
말씀하신 수렴성이 함수 개념 중 간격함수와 점근선을 활용해서 말씀드렸던 본 내용인 듯 합니다
(2026 디올 교재 보충 영상입니다! 수리 개념과 근간까지 담기에는 교재가 너무 Too much해져서,,,)
감사합니다 :)
네 맞아요! 저는 다른 선생님한테 배워서 내용자체는 조금 다르긴 한데 본질적으로는 같은 내용이네요!
https://youtu.be/RM8_bCiNbPg?si=LVRzH_Kc-Y-kIegI
수열이나 함수 해석에 있어 선생님 분들 별로 이견이 있을 수 있지만
결국 궁극의 도는 유사한 것처럼 숫자 감각 배양해 주시는 분이라면
가장 먼저 시간 단축으로 말씀해주실 유형이 근수축, 유전 현상인 듯 해요!
[유전 현상]
https://youtu.be/egT6fIpMO6w?si=ph9OHjvvyO-K8QGh
잘은 모르오나 좋으신 분 같네요 댓글 감사합니다/-/
어우,,, 살짝 날것의 모습도 좋아해주셔서 감사했습니다,,, 매년 교정할 때마다 보면 소진화시킬 것 투성이던데,,, 새해 소망하시는 바 모두 이뤄지시길 기원할게요 (o_ _)o (아마 현 첨부 페이지(수리 감각, 분수 연산)는 그 때 디올 or 디올 N제에도 있었던 내용으로 기억하긴 합니다!-! 2023 수능 토대 자료인지라)