다들 수학 제일 극혐하는 파트가 어딘가요
저는 수열이랑 수2 접선활용쪽
수열은 그냥 극혐하는 유전자가 있는거같고 수2접선쪽 앞에는 진짜 그냥 계산밖에 없어서 싫음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현역들한테유리한거일수도있음
-
개불안함 ㅈㅉ로
-
이런 류의 글은 처음인데 저도 언제꺼지나 수험생 커뮤에서 똥글만 싸는게 아니라 뭔가...
-
수분감 수2 끝냈고 스텝1에서 2~3개씩 못푸는거 잇음뇨 뉴런 나올때까지...
-
공대도 여자교수 비율 높여야하는데 국공립대에서 교수할만한 여자가 없어서 대충 아무나 다 교수되는중
-
[네이버페이 5만원 지급] 내신 1등급인데 수능 3등급 이하인 학생을 찾습니다! 3
[네이버페이 5만원 지급] 내신 1등급인데 수능 3등급 이하인 학생을 찾습니다!...
-
뱃지가 귀여움
-
탈릅하면 어캐됨
-
근데 더프에서 잘 나오길래 눈이 높아져버린 결과적으로 수능 망 원래 목표만 가자 제발….
-
내일부터 진짜 공부함 12
앞으로 인생의 밀도를 크게 가져가지 않으면 인생 진짜 ㅈ될듯
-
공부할 땐 과탐 재밌었는데
-
기원 2일차
-
덕코를 주세여
-
그런기분이네
-
누가 뒤지기 직전까지 줘패서 갱생해야
-
팩트는 이번 달이 2024년의 마지막 달이라는 거임 6
한 달 뒤면 2025년이라는 사실임
-
1시간이상을 집중을 못하겠음
-
아쉬울 걸 아쉬워하면 넌 딴 데 가 있지
-
1-1) 넓이 식 구해라 (범위 3개로 풀음) 1-2) 넓이 식 극값 개수구해뇨...
-
진짜 네다섯명은 한거같은데 지금까지 어쩌다 이런포지션이
-
둘 다? 미적 평균 높던데 그게 정상화된거임? 개인적으로 평균 엄청 높다고...
-
진짜 사람새끼가 맞냐? 주작 아님?
-
아오 오줌마렵"노"
-
메디컬 기준으로 얼마 차이 나나염?
-
Tx) Desmopressin
-
이번 수능에서 최선을 다 했는데 한계를 느낌뇨
-
왠지 느낌상 그럴거같은데..
-
표준 발음은 '그럼요[그러묘]', '군요[구뇨]', '거든요[거드뇨] 따위인데 ㄴ이...
-
ㅇㅇ
-
치악이 여기로다 뇨체 근본은 대 정 철
-
내신 한 바퀴 돌린 거 제외 노베인 예비고3입니다 내신 때 완자 기출픽 수특 자이...
-
나때는 걍 지원하면 붙었는데 그런데 의무병은 왜이리 인기가 많냐? 40%는 해병대 가는데 ㅋㅋㅋㅋ
-
뇨어뇨문학 0
-
이룬게 아무것도 없는데..
-
야뇨 1
뭐하뇨
-
뇨끼 2
아 라쟈냐 먹고 싶다
-
공통에서 안나온 번호로 공통찍고 선택에서 안나온 번호로 선택찍는게 맞음 아님...
-
공스타보고 연락주시는건가요? 아님 김과외 같은 앱?
-
원래 뇨는 의문문에 쓰이던 어미라는 걸 알고 있느뇨
-
공부질문))국어공부 타이밍이 중요하고 생각하시나요?, 8
계획짜면서 두 가지가 계속 걸리더라고요. 하나는 국어만큼은 8시40분에 맞춰서...
-
07 학과 추천좀요 12
대학은 좋은곳 아무대나 가고싶은데 이과 문과 상관없이(철학과는 제외) 추천 좀요...
-
많이..늦은거겠지..흐 죽ㅇ고싶다
-
수능꿀팁 0
시험치러가기 전에 뜨끈한물로 샤워해라 수능때 효과직빵임
-
분리변표시 과탐 96 기준3% = 69.74 ㅋㅋ -> 사탐 99랑 비슷5% =...
-
뭐함? 보통 카페나 스카에서 했는데 집에서 하는 학생이 있어서 학생 집 앞에서 걍...
-
말하고 싶은데 말하면 맞을 것 같음
-
https://youtube.com/shorts/3Uoi__7nFlo?si=VppIi...
-
문학 : 강기본 -> 강기분 ~~~~독서 : 강기본 -> 올오카 ~~~~언매 :...
-
(단, 화학은 제외)
삼각함수 좋아요
노베킬러고트
저런 힘내세요
도형까진 할만한데
사인 코사인 그래프 지멋대로 움직여놓고 교점 찾는 문제가 참....
아 이거 저만 이런거 아니였네요 삼각방정식 그냥 패고시픔
이번엔 여기서 딱히 걸릴 만한 문제가 안 나왔으니 다행이지
수열의귀납적정의
크악노가다시러
수열 자체도 극혐인데 그 안에 더 싫은게 귀납수열 크아악
삼각함수 도형이요.. 안보이면 그 시험은 조진거고
보이면 그 시험 잘본거인 수준으로 버거움
도형은 의외로 행동강령 정리하면 잘보임
나중에 칼럼이나 써볼까
2등급따리가 칼럼써도되나
전 수열이 제일 재밌던데 ㅠㅠ
기하로 극복하시는건 어떰
악마;
솔직하게 확통 경우의 수가 킬러로 나오면 개빡일듯 ㅋㅋㅋㅋ 28 수능이 매우 기대되는 부분
내신때 확통하다가 토하는줄
28수능 이후라고 해도 경우의 수가 킬러로 나올 가능성은 거의 없다 생각해요
걍 지금 수능에서 선택과목 확통 고른 거랑 거의 같은 범위인데 그대로 수1수2로 변별할 듯
역사적으로 경우의 수, 순열, 조합이 수능 범위가 아니었던 때가 더 드문데 킬러급으로 나온 건 거의 없었죠...
지금 미적분 표본까지 변별해야하는데 수1수2만으로 한다고?
상황이 좀 다르죠
그냥 옛날 B형시절처럼 1컷 96~92 정도로 지금보다 1컷이 높은 수준으로 낼 가능성이 훨씬 높죠
옛날 가형/B형이 표본수준이 낮았던 것도 아니고, 수1/수2가 어려운 문제 못 내는 파트도 아니고 (사설들 보면 미적분 쉬운 회차도 1컷 77 찍고 있는 거 예사잖아요)
옛날에는 미기가 필수여서 굳이 확통으로 변별안한거 아닌가요 수1/수2를 지금보다 고이게 내면 그냥 노마더인데 ㅋㄱㅋㅋ..그렇다고 28체제에서 컷을 높이면 변별이 안되고
수2는 솔직히 이미 한계치까지 간 거 같긴 한데 ㅋㅋㅋ 수1은 아직 무궁무진하다 봅니다
확통, 그 중에서도 조합론 파트는 평가원이 일부러 선을 넘지 않는 거라고 생각해서요.. 예전 스티커 문제 때도 '사과'한 적도 있다 들었고
뭐 이론적으로야 KMO 조합론 문제 그대로 갖다 박아놔도 교육과정 부합하잖아요
가나형 킬러몰빵 시절 나형에서
그냥 확통 킬러 내는 게 아마 교수급 출제자 입장에서 더 편할텐데
그런 거 냅두고 170930(나) 같은 이상한 노가다 문제를 내는 걸 택한 이유는 있다 생각해요
어디까지나 개인 의견임을 전제하자면
올해 6평 확통 28번, 30번, 23학년도 확통 30번이나
17~21 확통 중에서 가장 어려웠던 문제들 정도가 난도 맥시멈이 아닐까 싶어요
그리고 위에도 말했지만 저는 전공통 체제로 가면 옛날처럼 1컷 96, 92 정도를 목표로 출제할 가능성이 훨씬 높다 생각해요
지금처럼 1컷 84 전후가 일반적이게 된 것 자체가 선택체제 도입 후이고,
22예비시행 문제를 보면 이는 선택체제 도입 후의 입시 변화를 고려한 의도적인 변화라고 생각해서요
미분기하 ㄷㄷ
선 안넘고도 충분히 어렵게 할 수 있는 영역이라 ㅋㄱㅋㅋㅋ..적어도 확실한건 지금까지 확통시험지 중에서는 제일 어려울 것 같습니다
그리고 이 짓을 다시 하진 않을 거 같긴 하지만
수1 범위에서는 유서가 깊은 끝판왕 변별문제를 낼 수 있죠
"격자점"
대학수학능력시험 수학 영역의 모든 응시자가 대수, 미적분I, 확률과통계 (2015 개정 교육과정 기준 수학1, 수학2, 확률과통계) 범위 내에서 문항을 해결하고 변별되어 원활한 대학 입시가 이루어지도록 하려면 확률과통계에서 난이도가 매우 높은 경우의 수 문항을 출제하는 것이 불가피하지 않을까 생각했는데, 그동안의 기출문제에 근거를 두고 다르게 예상하시는군요
미적분I의 경우 이미 다양한 사고 방식이 다루어졌다는 데 동의합니다. 대수에서는 고2 전국연합학력평가 시험지에서 확인할 수 있는, 그러나 아직 수능에서는 본격적으로 다루어지지 않은 사고 과정과 상황을 출제하면 28, 29, 30수능 정도에서는 충분한 변별력을 확보할 수 있지 않을까 조심스레 생각해 봅니다.
개인적으로 2022 개정 교육과정에 기반한 새 수능의 핵심은 '융합'에 있을 것이라고 생각합니다. 조건 A, B, C를 만족시키는 모든 삼차함수 중 한 가지를 골랐을 때 그것이 조건 D까지 만족시킬 확률을 구하라는 문제나, 구체적인 수치를 묻지 않고 선지 판단을 시키던 2015 개정 교육과정 물리학I처럼 정확한 접점의 x좌표를 구하도록 하지 않되 지수함수와 로그함수 같은 초월함수의 접선의 방정식을 슬쩍 다루게 한다거나...
25수능을 향해오며 점점 공통수학1, 공통수학2 (2015 개정 교육과정 수학(상), 수학(하)) 의 비중이 커져왔다고 느끼는데, 이 흐름을 따라간다면 두 2x2 행렬의 성분으로 서로 다른 여덟 개의 함수를 제시하고 두 행렬을 곱해 얻어진 행렬과 네 실수를 성분으로 하는 2x2 행렬이 같다는 조건을 주어 연립방정식의 해를 구하도록 하는 문항도 새 시험지에서 확인해 볼 수 있지 않을까, 물론 행렬식도 배우지 않고 가우스 소거법도 배우지 않기 때문에 이러한 방향으로 문항이 출제된다면 교육과정 선밟기를 첨예하게 해야할 것 같긴 합니다만
행렬을 굳이 고1수학에 넣고, 역행렬조차 가르치지 않는 이유는 행렬 재추가가 입시 부담에 영향을 주지 않게 하기 위해서입니다. 따라서 새 수능에 행렬으로, 그것도 선형대수와 줄타기를 하는 수준으로 어려운 문제가 나오는 것은 불가능하다고 생각합니다.
마찬가지로 다항함수의 미적분과 확률을 섞는 건... 누가 봐도 선을 넘는 출제행태라 불가능하다고 봅니다. 내신에서도 그런 짓은 웬만하면 안 해요. 설사 단발성으로 한 번 정도 출제되더라도 지속적일 수는 없을 거라 생각해요. X걱세 같은 데서도 가만 있지 않을 테고요.
무등비 삼도극
그거 아직도 나오나요
교과 내용이긴 하죠
모든 ~의 합
여러 개 구하기 싫은데
지로삼 미만 잡
09교과 시절 미2안하면 저 내용 첨 접해도 어려움
전 미적분.. 계속 틀리네요
특히 적분
제일 첫인상 흉악했던건 지로삼이요!
현대대수요
헉
가환환을 탁
가환환이 commutative ring인가
마자용
진짜 수학 한글 번역 기괴한 거 같음
옹골집합 못참는데..
옹골집합 이러는 거 보니까 너무 쓸데없이 김김계 본 수학과 같네
수리 복전하세요?
미적 전부요
수열 지로 접선계산
기트남어 수1 미적 도형은 개재밌음
공간도형
적분
수열
자연수의 덧셈과 뺄셈
이 모든 고통의 시발점
수학은 다 재밌는듯. 다만 문제가 어려울뿐...
치환적분 부분적분 너무싫음 계산실수 무조건 터져서 .. 계산 길어지면 뇌절
중적분
지수로그함수 그래프
이게 맛있는건데잉;;;;;;;;;!!!
정적분으로 정의된 함수/지수로그 쌩계산/공간도형
수열 극혐
ㅇㅈ
수열 못이김
수열