스포주의) 샤인미 X 설맞이 공통&미적 손풀이
작년 수험생활 많은 도움을 받았던 두 팀의 조합이라니...보고 도저히 잠들 수 없었습니다...
작년엔 설맞이 모의고사 일러스트를 구할 순 없는지 쪽지를 보내기 까지..ㅎㅎ
핳 아무튼! 설맞이 샤인미 문제 정말 좋습니다. 많관부.
시험지는 미적까지 풀어와봤는데 아직 해설이 없어서 올리기 좀 무섭긴 하네요ㅠ
암튼 가보겠습니다.
1페이지 입니다. 틀릴 일은 없겠죠.
2페이지입니다. 뭐.. 특이한 건 없습니다. 7번에 적힌 a 는 a(t)같은 느낌입니다.. 가속도를 a로 쓰는게 버릇인지라..8번에서 계산 압박을 느끼셨다면 한번 정리해 두시면 될것 같습니다. 저 합들로 S9이 하나 남게 됩니다.
9번은 띠부띠부씰을 생각해주시면 됩니다.
10번은 미니멈함수라고 하나요? 그런거 언급할 것도 없이 그냥 비교해서 작은거 골라주시면 됩니다.11번 그냥 연산해주시면 됩니다. 첫번째극한에서 3차함수임을 찾아내는게 관건이었네요.
12번 까다로울 수 있습니다. 3n-1이 가지는 의미를 파악해보기 위해 나열한 후 n과 홀짝 관계가 반대에 있음을 파악해 준 후 그대로 대입해서 정리하면 깔끔하게 나옵니다.13번 x=3,-1에서 기울기가 2임을 체크하고 x축 좌표를 비교해줍니다. 적분도 막하는게 아닌 점대칭을 이용해줍시다.14번은 그냥 보자마자 (3,1)같다는 생각을..ㅋㅋ 정석은 아래에 적어두었습니다.
15번 되게 까다로울 수 있습니다. 하지만 자연수라는 파트와 (나)조건에서 저 값이 최솟값을 어덯게 가질 수 있는지를 확인하면 감마가 베타+1의 관계에 있는 이유까지 스트레이트로 가져갈 수 있습니다. 재밌었습니다.18번에서 전 그냥 a4.5이런식으로 쓰는걸 좋아합니다.
19번은 뭐 (x-t)로 보는 실수가 없었으면 좋았겠네요.
20번이 쉽게 나왔습니다. 경계가 포함되어있음을 확인하고 홀짝 나눠주시면 끝.21번에서 0,9만 찾으신 분들이 있으실 듯 합니다. 다른 상황도 있음을 같이 확인해주시면 될 듯 합니다. 자주 나온 소재입니다.
22번 비주얼은 우와 싶지만 생각보단 간단합니다. 홀짝 제곱근에서 근을 몇개 가질 수 있는지, 특이점 0은 어떻게 할것인지를 함께 고민하고 조건에서 부등호의 관계를 통해 n(A3)를 바로 찾는게 중요했던 문제 같습니다.네26번 같은 길이에선 식의 특이성을 생각하면 그냥 -가 +로 바뀌겠거니 생각해볼 수 있습니다. 야매이니 현장에선 하지 맙시다.28번도 쉽게 나왔네요. 그냥 간단한 새로운 함수 정의입니다.작년기출의 향기가 아주 강하게 나는 마지막 페이지입니다.
먼저 29번에선 수렴성을 통해서 k라는 항이 유한함을 먼저 체크해 주어야 합니다. 그다음 k가 (1/2)^n의 궤도위에 존재하는지, 쌩 다른 값인지를 체크하면 값을 정해줄 수 있겠습니다.
30번 작년 수능시험장에서 28번을 풀면서도 제 풀이 과정을 이해못하던 제가 떠오르네요. 문제의 맥락은 비슷합니다만, 무지성으로 하면 틀릴 수 있게 냈다는 점이 문항을 새롭게 볼 수 있게 해주었던 것 같습니다. 역시 샤인미&설맞이
후기
정말 재밌는 시험지였습니다. 충분히 기출에서 생각해볼 수 있는 문항(29, 30)도 있었고 새롭게 다가오는 문항(15)도 있었습니다. 새로운 문제를 풀고싶은 사람에게도, 기출을 정리해보고 싶은 사람에게도 좋은 시험지겠네요.
물론 모의고사라는 컨텐츠는, 문제풀이 실력 향상보다는 100분 내에 30문제 전체를 컨트롤하는 능력을 연습하는 컨텐츠인 만큼, 그에 맞게 행동 전략을 만들어서 정리해주셨으면 합니다.
좋은 시험지를 이렇게 배포해주신 두 팀께 감사인사를 전합니다. 수험생분들은 남은 시간 화이팅 하시길.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그 통합과학 통합사회 수능으로 보는 그건가요
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 0
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 3
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
오르비엔 좋은 사람 많다 히히 하면서 대충 올렸는데 갑자기 두려워짐 현실에서...
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 2
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
-
이훈식 오지훈
-
오지훈 개념완성 스텝1까지만 개념기출하고 이신혁쌤 현강 들어가도되나요? 0
스텝2 까지 꼭 수강하고 기출 풀어야 이신혁쌤 따라갈수 있을까요?
-
보고싶다 1
같이 살고 싶어 언젠가는 같이 살겠지
-
군대에서 하려고 하는데 ㄱㅊ음?? 근데 본인 4대역학 개못함 ㅋㅋ 재수강해야 함.....
-
9칸 0
이시점 라인 의미 없다는데 그래도 9칸이면 붙겠죠? 가고 싶어서 모의면접도 가고...
-
일본 애니에는 감동이 있다 가슴이 웅장해진다 진짜
-
10퍼에서 3분만에 2퍼됨
-
ㅂㅂㅇ 4
-
한달만에 완강 ㄱㄴ?
-
아직도 이해가 안된다 20
안읽씹의 심리
-
다들 그럼 뭐하는건지 쓰고나가셈
-
댓글 등의 반응은 현저히 줄어드는데 조회수는 개빨리 늘어남 ㅋㅋㅋㅋ 뭔가 있는 듯
-
중기:이거 불법입니다!
-
요즘 오르비는 다들 일찍 자는 바른 어린이들이라 3시에 하면 또 재미 없음 ㅋㅋ
-
영어 2,3 등급 차이 많이 심한가요? 예비 고3인데 그냥 영어 2등급까지는 띄울...
-
연애하고 싶다
-
고2인데 올해 모의수능 봤을때 물리3(찍맞1개) 지구5(실수 많이 함..서바 풀면...
-
.......
-
고3 때 김동욱 일클 조금 들었었는데 그때는 조금 추상적으로 느껴졌거든요(방식은...
좋은 시험지 내주셔서 감사합니다!!ㅎㅎ
30번 개쩌네요 그냥 치환을 벅벅 했는데
먼얘긴지는 알겠는데 뭔가 반드시그렇다!는게 잘 안와닿아서
혹시 조금만 설명해 주실 수 있나요 ㅜㅜ
캬
오늘 30번 풀면서 작수 28 아닌가..?했는데 같은 것을 느낀 걸 보니 맞나보네요
해설 잘 써주셔서 고맙습니다!!