하시발 이걸왜 못알아먹지
∀x(x∈A∪A^c) 이 식은 참인데
"모든 x가 A또는 A^c에 속한다" 라는 의미고
이말은 모든x가 원소로서 존재해야한다는 말입니다
모든x에서 x는 무엇이든지 될수있고
모든것(x)이 우리세계(A)나 다른세계(A^c)에 존재한다
는 말입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[AI 세특 작성]세특 작성 노하우 5 - 마무리 및 요약 0
지금까지 학생부 세특의 중요성과 작성 요령, 구체적인 사례 등을 살펴보았습니다....
-
*
-
님들 다 틀딱이라는 거임
-
연세대 약대 2
연세대약대 백분위70%가 96.25인데 올1이면 연대약대 가는거 아닌가요
-
전 고2때 오르비에서 고3들 고민상담 받아주고 다녔음 7
고2 정시파이터들이 자기객관화 잘 안됨…ㅋㅋㅋㅋㅋㅋ 나도 수능준비하는데 경쟁자로...
-
맞팔해주세요 8
팔로워 늘려서 한탕 해먹게
-
현우진 강기원 2
강기원 미적 현우진 뉴분감 병행 가능한 양인가요?
-
제가 재수 시작하는 주 주말에 오래 좋아한 연예인이 팬들 모아 영화 단체관람도 하고...
-
재수 영어 노베 3
올해 수능에서 영어 5떴습니다 문법 같은 경우는 괜찮은데 독해와 특히 단어가 많이...
-
정신은 멀쩡한데 머리가 깨질듯 아파오고 얼굴이 새빨개짐
-
쌤으로 등록할 수 있음요? 근데 좀 학생들이 있나요?
-
사람 불안하게 어..
-
85년생이래요
-
그냥 소주는 못마시겠음...
-
닉변 1
완
-
정시 추합 마지막날까지 다중등록으로 홀드하고 끝난뒤에 원서등록 취소해서 추가모집으로 보내면됨 ㅇㅇ
-
서울대부터 쫙 휴학 한거임?
-
생지러 n수생들 2
지금 머풀어요?
-
올해 갔어도 03이라 틀딱인데 내년에는 더 틀딱일 거 아니야
-
칼국수 맛집에 빵집 개많음 걍 수도로 하자
-
만약 진짜 주량이 반병이라면 한잔이라고 해야함
-
어떻게 매를 얼릴 수가 있음 너무하네
-
이걸 실제로 1월에 쓰곤 했던ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 아 그립다.
-
동사 누구들음 8
현역때 이다지 풀커리탔음 근데 이번 수능 동사에서 아무리 생각해도 이거 다맞으려면...
-
아 점공 ㅅㅂ 0
하나 밀렸다......내 뒤로 와 제발......
-
야무진 조합
-
[단독] 의대생 단체, 올해에도 ‘휴학계 제출’로 대정부 투쟁 8
정부의 의대 증원 정책 등에 반발해 휴학 중인 의과대학 학생들이 작년에 이어...
-
지거국이고 정시 14명 뽑고 마지막 업데이트때 30명중에 1등 7칸이였고 일주일넘게...
-
70명 좀 넘게 모집하는데
-
노래 잘 불러지나요
-
Eft 아니고요 etf도 아니며 nft도 아닙니다. 근데 제목은 낚시가 아니라 진짜입니다.
-
봇치 수학을 풀던 중 10
너무 어렵다... 수1 지수로그에서 벽느끼는 중... 정상모T 올인원 넘 어렵다...
-
ㅈㄱㄴ
-
덕코어디다쓰나요 6
진짜 교통카드 됨?
-
하면 봄?
-
너 ○○ 쌓여있잖아 15
빈칸에 들어갈 말로 옳은 것을 쓰시오.
-
이거 사면 유용한가요?? 이동할때 영어 공부용으로 살까하는데 패드 이미 13인치...
-
육군 군수 질문 6
디시에 물어봤을땐 아무도 답변 안해주던데 오르비분들은 친절하신거 같아서...
-
난 둘이 구분 거의 못하겠음
-
이신혁쌤 2
은 누구랑 결혼할까 나엿으면…
-
성대 점공 0
성대 교육 644 후반인데 현재 9/19임... 15명 뽑고 지원자 총 50명인데 붙겠죠 제발
-
갑자기 유아퇴행을 조져버리네 ㅅㅂ
-
기해분이나아요?
-
아직 젊은데 아이홀 각인가 나쁘지않아
-
25수능 수학이 백분위 65%로 4등급이었는데 2등급까지 올릴 수 있을까요? ㅠㅠ...
-
EFT가 뭐에요? 10
Eft 세계에 오신것을 환영한다는데 eft가 뭔질알아야죠.
-
어디간 거? 597인데 80등인가 90등이었는데 실지원
-
5-6등급애들 전문으로함 숙제 안하는애, 책 좋아하는데 지문 기억을 못하는애...
-
갑자기 궁금해짐 저게 안암캠퍼스 아니고 세종캠퍼스라던데
틀리셨습니다. 현대 논리학에서 양화사 ∀x 를 포함하는 명제는 반드시 x의 존재성을 보장하지 않습니다. "모든 x에 대해 p이다" 라는 명제는 설령 x가 존재하지 않더라도 참이 될 수 있습니다
모든 x가 U에 속한다면, 모든x가 일단 원소로서 존재해야만 하는것 아닙니까?
아닙니다... 그 가정이 틀렸어요. 모든 x에 대해~ 라고 진술하는 명제는 반드시 x의 존재성을 가정하지 않습니다.
∀x(x∈A∪A^c) 이식은 참이라고 하던데요?
네 맞아요. 하지만 '모든 x'와 같이 양화사 ∀를 포함하는 명제는 x가 실존하지 않아도 참이 될 수 있습니다.
아니 제말을 잘들어봐주세요. "모든x가 U에 속한다" 가 참이라면 모든x가 원소로서 존재한다는 말이잖아요
아뇨.. 더 이상 그만 우기세요. 그 명제는 x의 존재 여부와 무관하게 항상 참인 명제입니다
아니 제말이 왜틀렸죠?
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
논리학에서 양화사 '모든' 은 반드시 그 대상이 존재해야만 참이 된다고 보지 않으니까요... 우선 존재해야만 한다<<<<이게 틀린 가정이라는 거에요.
∀x(x∈A∪A^c) 이식이 참이니까 x가 원소로 존재할수 밖에 없다고요
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
그게 아니라는겁니다. X의 존재 여부와 무관하게 모든 x라는 표현은 성립할 수 있어요. x가 존재해야만 모든 x라는 표현이 가능하다 보는건 고전 논리학의 관점입니다
x가 없으면 애초에 ∀x가 아닌데요
제말 왜곡하지마세요 모든x가 U에 속하므로 모든x가 원소로서 존재하는겁니다
이 사람 어그로입니다
먹이 주지 마십쇼 선생님
네 그렇게 생각하세요
"x가 없으면 애초에 ∀x가 아닌데요" 이말이 틀렸나요?
어떤원소가 없으면 모든원소라고 할수가 없는데
하.. 왜 그렇게 반응하시죠?
현대 논리학, 특히 20세기 이후의 논리학에서는 '존재'와 '양화'의 개념이 더 명확하게 구분됩니다. 현대 논리학에서의 전칭양화사(∀, "모든 x")는 존재를 직접적으로 가정하지 않습니다. 즉, "모든 x에 대해 P(x)가 참이다"라는 명제가 참이 되려면, 해당 범위 안에서 거짓이 될 수 있는 항목이 없다는 것만을 의미하지, 실제로 그 범위에 속하는 x가 존재해야 한다는 것을 의미하지는 않습니다.
특히 현대 수리논리학에서는 공집합과 같은 개념이 많이 등장하는데, 공집합에 대한 모든 명제는 자동적으로 참으로 간주됩니다. 예를 들어, 공집합에 속하는 모든 x에 대해 P(x)가 참이라는 명제는 공집합 안에 아무 것도 없기 때문에 참으로 간주됩니다. 이처럼 현대 논리학에서는 존재와 무관하게 양화사를 다루는 경향이 더 강합니다.
∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그리고 (모든x에 대해 x가 U에 속한다) 라고할때 어떤x가 없으면 (모든x)라고 할수도 없다고요
위에것도 gpt 답변인데요...
"공집합에 속하는 모든x" 이게 대체 뭔말이죠
잘 읽었습니다. 혹시 '어몽어스가 의심스럽다' 라는 명제도 증명해주실 수 있나요?
하나 더 지적하고 가겠습니다. A라는 집합을 우리 세계에 실존하는 대상이라고 잡았을 때, A^c는 말 그대로 A에 속하지 않는 모든 것이 될 수 있습니다. A^c에 속한다는 것이 반드시 다른 세계에 실존한다는 의미가 될 수 없죠.
A^c에 속한다는 것은 '우리 세계에 실존하는 대상이 아니다' 와 같은 의미가 되고, 여기에는 곧 소설 속 세계와 같이 우리 세계에 속하지만 상상에서만 존재하고 실존하지는 않는 대상들, 우리 세계와 다른 세계에도 없는 대상들, 우리 세계에만 없는 대상들...등등 말 그대로 우리 세계에 실존하지 않는 모든 것들이 들어갈 수 있습니다.
따라서 저 명제가 항상 참이고, 심지어 x가 존재한다 하더라도 그것이 항상 실제로 존재한다로 이어지지는 않습니다....
하........∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그 말은 맞지만 그것이 꼭 x의 존재성으로 이어지지도, 실존성으로 이어지는게 아닙니다.
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
전체집합은 말 그대로 '전체'이기에 님 마음대로 전체를 세계로 한정지으시면 안됩니다.
A가 우리세계고 A^c가 다른세계입니다
그런데 A에 속한다고 반드시 우리세계에 실존한다는건 아니잖아요? 해리 포터나 마블 영화 세계관은 우리 세계에 속하는 것이지만 실제로는 가상의 세계관인것처럼
해리포터가 진짜인 세계가 있을겁니다
해리포터가 진짜인 세계가 있을겁니다
넵!
제가 왜이렇게 고집피우고 난리치는지 이해하실거라 믿습니다
x가 존재한다는 가정이 문제인거 아닌가요? 논리학에 대해선 그리 많이 알지 못하지만 작성된 댓글을 보며 든 생각은 타당성과 건전성에 혼란이 있으신것 같은데... 주장하시는 논증은 타당하지만 x가 존재한다는 명제의 참이 보장되지 않으니 건전성에 결핍이 생기지 않나요? 존재하지 않는 x를 존재한다고 하는 명제의 참 거짓이 문제가 된다는것 같습니다
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
우리가 세계에서 관측불가한 것이 실존하다고 설정하신거라면 그리고 그것들이 전체집합내에 존재한다고 가정하신거라면 주장하시는 논증은 타당하다고 생각합니다. 다만 그것이 과학적으로 가치가 있는지는 모르겠습니다.
쿠쿠리 그저 신
님
1=2라면, 3=4이다. 참임 거짓임?
참요