아니진짜 왜이렇게 멍청한 애들이 많지..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
7657657 0
칸수변동 왜이랴 ㅅㅂ
-
아직도 짜다는 생각 저만 드는건가요? 아니 그게 문제가 아니라 이러다가 원서날에도...
-
빙고!
-
전자는 가군에 고대 쓰는대신 냥대를 포기해야하고 후자는 냥대를 안포기해도 됨
-
윗표본 왜이렇게 많이 들어오냐ㅜㅜ
-
진짜 다군 어카지...
-
진짜계속오르네
-
9월에 홍대 인문자전 목표로 정시선언하고 수능준비 하고 있는데 현역 정시는 무조건...
-
내년 6월 30일에 입영하라고 하는데 이거 미루면 현역 가야되나요? 1학년 1학기만...
-
전문직 중에서 건축사라고 생각함 전세계적으로 건축학 5년제 교육과정이 공통이라...
-
텔그에 100퍼 가능하다고 뜨면 수강료 자체는 계속 전액 무료인건가요? 모집요강...
-
부러움 난학벌까지...
-
아 안해 3
표본분석 안해
-
20 22번 틀렸는데 1년 더 공부해서 100점 맞고 싶습니다..! 보통 이런...
-
아 잘놀았다 2
재밌었어요 군대가는 애랑 기숙재수 가는 애랑 이제 대학가는 애
-
구?마유시가 한거라 이민형은 몰랐다고 하네요
-
생기부 컨설팅 0
강원도 ㅈ반고(표준편차 21~27) 거등학교에서 고대 학업우수 노리는 예비고3입니다...
-
하고싶을듯 ㅎ….
-
하위과 입학> 전과or복전으로 취준안전빵 깔고 로입준비하고 싶은데 전과나 복전이 쉬운편인가용??
-
양아치 브랜드 인식 있음? 못입고다닐정돈가
-
펑
-
입시철엔 하겠다는사람많은데 성공해서 하는중이란 후기가없노
-
저메추 받음
-
이다지 김종웅 권용기 중 들으려고 합니다
-
반영 안되겠네...
-
어그로 안끌고 담백하게 묻겠습니다 치킨메뉴 추천해주세요 11
맨날 먹던거만 먹으니 지겹네요
-
외대도 나왔네요 0
-
ㅈㄱㄴ
-
경희>우석>원광임???
-
엔수를 하고싶으니 대학을 가겠다는 명분을 만드는거다
-
출하싫 0
흑흑
-
.
-
엉엉
-
한림하고 부산 고민중이고 점수는 남긴 합니다 근데 수도권은 화1 선택에 틀려서 또...
-
지거국 20명 좀 넘게 뽑는과인데 아직도 표본이 30명 초반이면 이거 막판에 몰려서...
-
신창섭
-
다군 6칸 추합 0
믿어도 되나요 홍대 법학임
-
재수하면 한양대 기계 갈 수 있을까요?? 수학 나름 열심히 한 것 같은데...
-
진학사업뎃점 1
도파민줘어
-
그래서 우원식이 8
과반이상이 탄핵 요건이다 라는 근거가 무엇임? 국회의장 독단으로 할 수 있는건가
-
근데 이 프사 왜 하는 거임??
-
흠..
-
안녕하세요
-
진학사 기준 인하, 아주 공대는 웬만하면 다 붙고 과기대는 불안한 데가 꽤 있길래...
-
어그로 죄송합니다... 3월 1일까지 하려는데 가능할까요?? 아니면 줄일까요??...
-
정벽시티때문이야
-
반갑습니다 2
나도 전적으로 동의함!
모순 : p,q 명제가 동시에 참일 수가 없다.
p : true / q : false
p : false / q : true
거짓은 그냥 false
둘이 필충이 아닌데요
아니 본문식이 틀렸냐고요
모순<->(p and not p)<->거짓
도대체 이게 뭐가틀림?
모순명제의 진리값이 거짓인건 맞는데, 거짓이라고 무조건 모순명제인 건 아니라서
p and not p -> 거짓
이 맞는 것 같아요
(p and not p)의 값이 거짓이니 거짓과 동치라는거임
1. 진리값은 명제가 아니기 때문에 모순명제와 거짓을 동치라고 볼 수 없다.
2. p and not p라는 모순명제의 진리값이 거짓이기 때문에, 그것의 부정인 무모순명제의 진리값이 참이 되는 것이다.
저는 이렇게 이해했습니다..!
명제(命題, proposition)란, 참이거나 거짓인, 즉 진릿값을 갖는 것을 말한다.
명제의 정의는 진리값을 가지는것이기 때문에 "거짓" 자체가 명제일수있음
"false"도 명제라고 할수있어?
ChatGPT의 말:
ChatGPT
네, "false"도 명제라고 할 수 있어. 명제는 참(true) 또는 거짓(false)을 나타낼 수 있는 문장을 말하는데, "false"는 그 자체로 거짓인 명제를 의미해. 다시 말해, 명제는 그 값이 참이든 거짓이든 상관없이 하나의 논리적 단위로 취급돼.
참여하지 말고 지금 도망가세요
시간만 뺏깁니다
헉 넵...ㅠ
내일 금요일(2018.08.24)은 태풍으로 학교 임시휴업일입니다.
등교에 참고해주세요. 참고로 담주 월 7교시(과학)합니다.
비추버튼입니다!
진리값을 갖는 거지, 진리값 그 자체가 명제는 아니니까요
"false"도 명제라고 할수있어?
ChatGPT의 말:
ChatGPT
네, "false"도 명제라고 할 수 있어. 명제는 참(true) 또는 거짓(false)을 나타낼 수 있는 문장을 말하는데, "false"는 그 자체로 거짓인 명제를 의미해. 다시 말해, 명제는 그 값이 참이든 거짓이든 상관없이 하나의 논리적 단위로 취급돼.
아니요, 진리치는 명제가 아닙니다. 진리치는 특정 명제의 참이나 거짓을 나타내는 값이며, 독립적인 문장이 아니기 때문에 명제의 정의를 충족하지 않습니다. 명제는 참 또는 거짓으로 평가할 수 있는 문장을 의미합니다.
chatgpt는 믿을게 못 됨
명제(命題, proposition)란, 참이거나 거짓인, 즉 진릿값을 갖는 것을 말한다.
그렇다면 진리값을 가진 "거짓", "참"도 명제아님?
거짓은 어떤 진리값을 가지나요? "A는 거짓이다" 라는 문장은 진리값을 가질 수 있지만 그냥 "거짓"이라는 문장은 진리값알 가질 수 없고 애초에 문장도 아닌 것 같습니다.
P&~P가 (p and not p)이고
F가 거짓입니다.
P&~P↔F와 (p and not p)<->거짓은 같은 논증입니다.
(T and F)->F 같은건 뭐임?
저는 그러한 논증은 아직 본 적이 없는데 어디에서 보셨는지 말씀해주실 수 있나요?
외국사이트에서요
제가 아는 선에서는 T,F는 명제가 아닌 걸로 알지만 T, F도 명제라고 가정한다 했을 때 T, F는 어떤 의미를 가지나요? 아무런 의미를 가지지 않는다면 명제 T, F에 대한 논증자체가 불가능할 것 같습니다.
T는 true고 F는 false죠
'푸르다'라는 서술어는 그자체로는 의미를 가지지 않잖아요. '하늘이 푸르다.'처럼 주어와 결합하여 문장이 되어야 의미를 가지게 됩니다. 그런 것처럼 'T', 'F'도 'P는 T이다.'처럼 어떠한 명제 P를 주어로 결합해야만 의미를 가지는 것으로 알고 있습니다. '참이다.'라는 것 만으로는 아무런 의미를 가지지 않는 것 같습니다. 이러한 점에서 'T', 'F'는 아무런 의미를 가지지 않는 것 아닌가요?
T는 true의 약자고 TRUE는 말그대로 참이라는 의미라고 생각함
무엇이 참이다 가 아니라, 그냥 "참" 이라는거임
P&~P↔F
이 논증은 참이 맞는 것 같습니다. 이때 위 논증의 의미는 P&~P라는 명제가 거짓이라는 의미입니다. 위 명제의 대우는
~(P&~P)↔T
당연히 위 명제도 참입니다. 이때 위 명제의 의미는 ~(P&~P)라는 명제가 참이라는 뜻입니다. 위 논증은 무모순율과 다를게 없습니다. 무모순율이 성립하면 당연히 성립하는 논증입니다.
다만 위 논증은 '어떠한 공리계에서 P가 참이라고 가정했을 때 공리계가 무모순이라면 P는 참이다'라는 의미는 가지지 않습니다. 위 논증은
~(P&~P)→P
라는 다른 논증이니까요
제논증은 모순<->(p and not p)<->거짓 인데요
~(P&~P)↔T 이게 비모순(무모순)이면 참이고, 참이면 비모순이다 아닌가요
~(P&~P)라는 명제가 참이라는 의미입니다.
T와 동치라면서요
P↔T가 참이라는 것은 두 명제의 진리값이 같다는 의미이고 이때 T는 항상 참이니 P도 항상 참이여야합니다. P가 참이면 위 명제는 참이고요. 따라서 위 명제의 의미는 'P는 참이다'입니다.
~(P&~P)↔T 이게 비모순(무모순)이면 참이고, 참이면 비모순이다 아닌가요
맞습니다
역시 옳은 말은 쿠쿠리
세상의 진리를 모조리 파악하셨네ㄷㄷ
님 틀린 것 같아요
이런글 너무 많이 올리지 마세요... 그러다 정신병 도지심
물어볼 거면 제대로 물어봐라
모순<->(p and not p)<->거짓
냐고 물어보셈
애초에 모순 ↔ 거짓이 안 된다고
모순<->(p and not p)<->거짓 라는 식이 맞냐고 물어보셈
아니 님이 뭔짓을 해도 모순<->(p and not p)<->거짓 라는 식은 참이라니까요
그렇게 물어본 게 저거라고 아오
아니 님이 뭔짓을 해도 모순<->(p and not p)<->거짓 라는 식은 참이라니까요
ㅂㅅ 그렇게 사세요 니가 그렇게 좋아하는 gpt한테 조금만 물어봐도 아닌 걸 알텐데 ㅋㅋ
그럼 나는 안물어봤음?
저 서울대 의대생인데 님말이 타당한 지적이라고 생각해요 !
니 말을 gpt가 제대로 이해한 게 아니라고