[에라둔] 비례 상수와 역학적 에너지
저번에 업로드한 피직솔루션 비례식 파트 중에서 다소 생소할 수 있는 내용으로
비례 상수의 일치가 있는데 이부분에 대해 짧게 칼럼을 써볼까 합니다.
비례식의 특성을 몇개 뽑아보면 다음과 같습니다.
1. 곱셈, 나눗셈으로 이루어진 관계식은 비례식끼리도 성립한다.
비례식끼리는 곱셈 나눗셈이 가능하다는 의미입니다.
(F=ma면 F비 = m비*a비)
2. 비례식끼리는 일반적으로 덧셈 뺄셈이 불가능하나 양쪽 비례상수가 동일할 경우 가능하다.
A=B+C라는 관계식은 A비 = B비*C비 가 불가능합니다.
단, 이 때 B비와 C비의 비례상수가 동일할경우엔 해당 식이 성립하게 됩니다.
3. 두 비례식의 덧셈, 뺼셈 과정에서 한쪽 비례식이 0:0일경우엔 덧셈 뺼셈이 가능하다.
(0:0) 에 (2:3)을 더할 경우엔 2:3이라는 결과가 도출되는것에 문제가 없음을 의미합니다.
4. 서로다른 두 비례식의 비례상수를 일치시키기 위해서는 각 비례식에 어떠한 상수비율을 곱해준다.
A비율과 B비율의 비례상수가 다를 경우 A, B라는 비례식에 각각 a와 b를 곱하여 일치시키는것이 가능함을 의미합니다.
여기서 포인트는 모르는 미지수 a,b를 곱하나 1, k를 곱하나 그게 그거라는것입니다.
3의 경우에는 우리가 정지된 두 물체가 t초 뒤 속력이 2:3이면 가속도 비율이 2:3임을 도출할 때 종종 쓰입니다.
(dv를 2:3으로 도출했다는것 자체가 0:0 과 나중속력 비율을 가감했음을 의미합니다.)
물리학 역학에서 덧셈, 뺄셈이 사용되는 구간을 뽑아보면 어떤것이 있을까요?
지금 제 머리에서 바로 떠오르는것들을 뽑아보자면
속도의 변화량을 구하고자 할 때?
역학적 에너지의 합을 구할 때?
정지된 시점으로부터 두 지점간의 거리를 구할 때?
오늘 다루어볼 이야기는 역학적 에너지에 대해서입니다.
역학적 에너지는 다들 알겠지만 mgh 와 0.5mvv의 합입니다.
보통 우리는 위치에너지의 비율을 구한다면 m비율과 h비율을 곱할것이며
어떠한 물체에 대해서는 단순히 h비율만을 구합니다.
어떠한 물체에 대해서 운동에너지 비율을 구한다면 vv비율을 구할것입니다.
문제는 무엇이냐, 우리는 역학적 에너지의 보존법칙을 이용 할 때
운동에너지와 위치에너지의 교환 및 이 둘의 합이 일정하다는 특성을 이용할 때
가감을 굉장히 많이 합니다.
그러나, 일반적으로는 비례식끼리는 덧셈 뺄셈이 성립하지도 않을 뿐더러
이 둘의 비례상수를 일치시키려 하기도 뭔가 낯설게 느껴질것입니다.
이 때 우리는 앞서 언급한 4번 성질을 이용합니다.
A 비례식 = 2:5:8:9
B 비례식 = 4:3:6:8
우리는 두 비례식의 비례상수가 같은지 다른지 알 수 없으므로 A+B비율을 바로 구할 수 없습니다.
그러나, 우리가 두 비례식에 각각 서로다른 상수 또는 어떠한 비율 a:b 또는 1:k, k:1 을 곱하여
비례상수가 같아졌다는 가정하에 문항을 푸는것은 상관없습니다.
A 비례식 = 2:5:8:9
B 비례식 = 4k : 3k : 6k : 8k 로 변형하고 이 둘의 비례상수는 같아졌다라고 가정하여도 무방합니다.
위와같은 가정을 했다면 아마 k를 구하는 방향으로 문항풀이 방향이 잡히게 될것입니다.
사실 근원적으로는 결국 mgh, 0.5mvv 를 상수로 나타내는 꼴이나간혹 v비율로 접근하다가 역학적 에너지에서 방향성을 놓치는 경우가 있어
그럴 때에 위와같은 방식으로 생각하면 편할것입니다
최근 문항 중 위와 같은 원리가 적용될만한 문항을 몇개 가져와보았습니다.
24년 7월 시행 모의고사 20번.
우리는 역학적 에너지 보존 법칙에서 h변화는 v제곱 변화에 비례함을 익히 알고있을것입니다.
일단 p, q, r, s, t에 대해서 한번 높이 비율을 구해보면
1 2 1 1 2 가됩니다.
속력 제곱의 비율을 구해보면
16 9 rr ss 0 이됩니다.
즉, 위치, 운동 에너지의 비율을 표현하면 아래와 같겠죠.
우리는 위치에너지와 운동에너지의 비율을 구했으나 이 둘의 비율은 비례상수가 일치하지 않으니
자유롭게 가감할 수 없습니다.
이 때 아무곳에 미지수 k를 곱하여 비례상수가 동일해졌다는 가정을 하고 k를 구해도 될것입니다.
저라면 편하게 높이 비율에 k를 곱하여 위치, 운동에너지의 비율을 구해보겠습니다.
그럼 이제 문제풀이의 방향은 저 k를 구하는것으로 바뀔것입니다.
(또는 r,s 와 k의 관계식을 구한다든지)
이제 문제 조건을 하나씩 써주면 되겠습니다.
s와 t 구간은 역학적 에너지가 보존되므로 k+ss=2k 로 ss가 사실은 k라는 값이 나옵니다.
s, t를 보니 h변화 k에 운동에너지가 k가 변합니다.
구간 qr도 h변화가 k니 운동에너지가 k가 변할테니 rr=9+k가 되겠습니다.
이제 마지막 조건 역학적 에너지 손실조건을 써보겠습니다.
p에서 q뺀값의 3배가 r에서 s뺀값이라합니다.
(7-k)3=(rr-k) 인데 rr-k는 위에서 9임을 구했습니다.
k=4가 되겠네요.
따라서 r/s는 root13 / 2가 될것입니다.
k를 곱하는 방식의 장점은 자신이 원하는 방향에 k를 곱하여 식 조절을 본인 원하는 방향으로 할 수 있다는것입니다.
이러면 역학적 에너지 역시 비율적 계산이 가능하겠죠.
다른 문항도 하나 준비해왔습니다.
위 원리를 통해 한번 풀어보시기 바랍니다.
2023년 6월 시행 모의고사 20번
일단 마찬가지로 h의 비와 vv의 비를 나타내보겠습니다.
역시 이 두 비율은 비례상수가 일치하지 않아 가감할 수 없습니다.
h비율에 k를 곱하는게 편할거같지 않나요?
위와 같이 바꾸고 이제 자유롭게 가감할 수 있습니다.
문제 조건에서 역학적 에너지 감소량은 pq의 2배가 rs라고합니다.
(3-2k)2 = (k+x-1)
qr 구간은 역학적 에너지가 보존될테니 2k+1=k+x
이제 이 둘을 적당히 연립해주면 답이 나올것같습니다.
그냥 k+x 자체를 대입해버리죠.
6-4k=(2k+1-1) k=1
자연스레 x는 2가 되겠네요.
검산해보니 pq 손실량이 1, rs손실량이 2니 조건에도 부합합니다.
r에서의 속력은 q에서의 root2배가 되겠습니다.
위 풀이가 익숙해지고나면 곱해주는 k값이 눈대중으로 보이는 경우도 있을것입니다.
(머리속에서 나도 모르게 k에 1,2,3... 씩 대입)
한문제만 더 풀어보도록 합시다.
2023년 9월 시행 모의고사 19번
마찬가지로 원점 O 그리고 p, q, r에 대해 위치비를 구해봅시다.
6 1 2 x 문항에선 x를 구하는 문항이 되겠습니다.
이제 속력의 제곱도 구해봅시다.
0 2 1 0
이 두 비례식의 비례 상수를 맞추기 위해 아래비례식에 k를 곱한다면
누가봐도 아래에 곱하는게 훨씬 편해보일것같습니다.
6 // 1 // 2 // x
0 // 2k // k // 0
여기서 포인트는 q, r은 역학적 에너지가 보존이 되는데...
그럴거면 그냥 k를 x-2로 놔도 되지않을까요?
그래야 2+k와 x가 같을테니까요.
6 // 1 // 2 // x
0 // 2x-4 // x-2 // 0
이제 문제조건, op 손실량의 2배가 pq손실량이라 나와있으니
(6-2x+3)2 = (2x-3-x)
18-4x = x-3
x=21/5
여러 풀이방법이 있겠지만 제 풀이 대부분의 방향성이 비례식을 사용하는것이다 보니
저는 위와같은 풀이를 선호합니다.
전체를 묶어 계산하다보니 상황파악을 내가 어디까지 하고있는지를 알기 쉽다는게 장점같습니다.
0 XDK (+500)
-
500
-
찾돌이 찾순이 마인드로는 안풀리는데 하..
-
"중2병보다 더한 대2병 왔다" 대치동 아이들 덮친 이상현상 1
헬로페어런츠(hello! Parents)가 3주년을 맞아 양육자의 고민에 직접...
-
나 수능판 떠나고 정상화된게 너무 열받음
-
아니 언매 연우문제 나만 시간 ㅈㄴ씀?;;; 다 정답같아ㅜㅜ
-
수학 기출 0
수분감으로 기출 2~3회독 했는데 외워서푸는느낌..?이라 남은시간동안 기출뽑아서...
-
마지막 이감 3
산뜻하다 최저러라서 등급만 1~2 나오면 되는데 마음이 조으네요 6,9평 다...
-
얼버기 6
-
15일부터 17일까지 전통적으로 수능 다음날 함 사람이 너무 많다는게 단점이긴 한데...
-
참 고루고루 틀렸네요. ㅗ
-
흠..
-
25분에 4개 틀리면 잘하는 거임? 확실치 않으면 손가락 걸기 하지 말아야겠다
-
큰일나는 작품들이긴 함 고전 잘 푼다는 가정 하에 뚫기 힘든 작품은 옥린 유씨 옥루...
-
6,9모의 중간 정도?
-
이감 6-10 6
문학이 진짜 ㅈㄴ어렵다 최근 본 이감중에 젤 빡빡함…
-
수학이랑 탐구만 써야겠다 수학은 뭐 시간 많고 탐구는 선택 사이 쉬는시간 + 지구는...
-
어제 살인사건만 5건이라는데 이거 뭐임 그냥 꿈인거지..?
-
독서 0틀 언매 0틀 문학 4틀(2점만)
-
연계 예상 3
고전 소설 - 창선감의록 현대 소설 - 장난감 도시, 큰산 현대 시 - 성에꽃,...
-
파본검사할때 내가 먼저푸는곳 접어놔도 됨? 맨날 시험지 달라붙어서 기분 머 같앗음
-
[30분기적] 지구과학 파이널 역전 총정리집. 30분만에 전단원 총점검! 0
5000부 판매돌파 지구과학 30분의기적 파이널 총정리집을 소개합니다. (현재...
-
불국어지 9모 96점 11덮 96점인데 전자는 2등급 후자는 무보정1등급임
-
현 고2인데 대성듣고있고 내년 패스는 사놓은상탭니다. 올해 수능 끝나거나 12월...
-
2년전에도 올렸던거긴 한데.. 지구과학 풀 때 이건만큼은 뇌에 새기고 들어갔으면...
-
아으
-
근데 왜 메인을 간건지 모르겠음 그리고 난 물불 뭐가 더 낫다고 언급한 적 없는데...
-
2019가 제일 좋은듯 근데 내가 수능본 해 수특은 다 유아틱함 2020(위인들...
-
수특 커스텀 글 잔뜩 올려줘....
-
이쯤에서 보는 23수특 24
-
간쓸개는 파이널빼면 모든 문재가 ebs연계 아니죠? 이매진은 거의 다 ebs연계만...
-
재조명되는 25수특 18
솔직히 보다보니까 귀여워서 정들지 않냐 학습지에 어울리지 않는 멍청한 눈빛 저기에...
-
ㅋㅋㅋㅋㅋㅋㅋㅋ…
-
그의 생일이 당시 국왕보다 신문에 크게 찍혀서 그 이후로 개인의 생일을 신문에...
-
소신발언 하는 尹 14
헉
-
이거거든
-
07인데… 좀 기념으로 남길 수 있는 수특 디자인을 줘…
-
근데 10회분이었네 몇개 풀었긴 한데 수능 전까지 다 못 풀고 갈 듯...
-
다음날에 일어나기 힘든가? 반대 아닌가
-
아쥬임
-
ㅜㅜ
-
음 역시귀엽군
-
걍하고싶은거해야지
-
1? 3? 시대나 강대 3월애 열던가?
-
우울증약은 성욕이 없어지고 개졸림 자도자도 피곤함 adhd약은 식욕이 없어지고...
-
탐구 물지 선택이고 물리3 지구2 목표로 하고 있는데 수능 직전에 풀 걸로 수특을...
-
롤스 만민법 정의론 원전 2회독 노직 아나키에서유토피아로 번역본 1회독 칸트...
-
아니 요즘 왤케 일어나기 힘들지 ㅅㅂ 지각만 5번 넘는데
-
아니 벌써 1
추운 겨울이다 아아
-
김승리 현강 0
9시 수업도 늦게 끝나는경우 많나요...?
-
진짜 불국어 만나면 1교시 국어 난이도가 2교시 수학 성적에 미치는 영향에 대한...
-
일단 제가 푸는 방식으로 3시간동안 안풀려서 밑에 그림은 먹어버려서 제가 그렸습니다...
어 에라둔 선생님이네 언제 부활하셨데
22년 가입자분께서 기억하시는게 저한테는 더 신기합니다 ㅎㅎ
물리로 꽤나 유명하셨으니.. 중학생 때 물리공부할때 참고 좀 했었읍니다ㅎㅎ..
에라둔!에라둔!에라둔!
goat
예전에 옆동네에 무료배포하셨던 독학서(?)자료 돌림힘땜에 본적있는데 언제적인지
돌림힘 Goat
계산하다가 v_0같은거 하나하나 쓰기 귀찮아서 생략할수 있지 않을까?에서 착안해서 쓰던 그거네요
뭐라 말로 풀어서 설명하기가 참 힘든데 잘 명시지화 해놓으신듯