2021연논 질문 하나만 해도 될까여
3-2 해설에 일반성을 잃지 않고 사각형이 탑처럼 쌓여 올려져 있는 첫번째 그림 형태를 가정하고 풀이하는데, 아래 그림도 포함된 풀이인지 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㄱ ㅈㅉㅇㅇ?
-
우리 학교 1등이래 ㅈㄴ게 부럽네 ㅠㅠㅠㅠㅠ
-
고미디 가면 학점 3.9 ㄱㄴ?
-
나름 오르비 오래 한 거 같은데 그렇게 많지가 않음 편의점 플렉스 하려면 한참 남았네;;
-
뽀뽀마렵게하네 진짜
-
뭐가 더 재앙임?
-
과외안구해야지냐 왜 ㅇㅇ. 7등급에서 수능 상위1프로 미적분의왕 ㅇㅇ.
-
가군을 가든 나군을 가든 해야하는게 4점대라니 고생길이 ㅈㄴ훤하네..
-
최상위권에서 문이과 비율이 반반일 거라고 믿었음 내신 수학 1등급의 반은 문과일거고...
-
은 구라고 빨리 점공 들어와라
-
10시되면 진짜 자야지 15
새벽까지 안자면 우울해짐
-
선착순 1명 1만덕 11
주세요
-
만원범 ㅁㅌㅊ 2
오늘은 헬스 제끼고야식
-
이야 설민석 0
말 진짜 잘한다 역사 스토리 들려주는거 들으면 흡입력 ㅈ됨 키야 부럽네
-
과탐에 3% 가산 주는 공대를 사탐으로 들어가려면 사탐 백분위가 과탐에 비해...
-
뀨우 >< 19
세젤귀 본인 등장~☆ 키랏!
-
T1 LOL - Doran : 팬분들과 건강하고 행복하게 - Oner : 안다치고...
-
흠
-
지금 의대가 굉장히 불안정한 상황에 놓여있는데, 불인증이나 모집정지라도 된다면,...
-
제가 노베여서 방인혁T 커리 따라가고있는중이거등요 근데 여러가지운동파트 개념 다듣고...
-
尹 측 “55경비단, 관저 출입 허가 안 해…공조본 사기극” 2
대통령 관저 외곽 경호를 담당하는 55경비단의 ‘공수처·경찰 출입 허가’ 여부를...
-
오르비에 문과는 ㄹㅇ 잘 없네
-
이제 곧 1학년 될텐데 1지망 성신여대나 2지망 명지대나 둘중 한곳 갈거같습니다...
-
학창시절때 설렜던 썰 13
같은 반 남자애가 나 손 작다고 크기비교 하자면 손바닥끼리 맞닿았던 적 있었음 지금...
-
수능 끝나고 두 달 동안 핑핑 놀아서 그런지 진짜 집중력이20분??30분 꼴인데.....
-
안녕하세요 오랜만에 방문합니다. 약대에도 관심이 많으실텐데, 아무래도 약대가...
-
애니 추천 0
꿈빛 파티시엘 ~~~>어릴때 누나땜에 봄
-
...
-
덕코줍줍 1
-
o ii a i o i i i a i
-
ㅈㄱㄴ
-
수1,2는 여러번돌렸고 미적은 기초 약간 아는데 3모 대비 겸 기출 돌리는 시기...
-
퇴퇴퇴근 1
재수 끝내자마자 월 150버는 삶 ㅁㅌㅊ인가요
-
역시 수학은 밤에
-
얼굴 비추고 학생이 앞에 없는데 설명하려니까 은근 쉽지 않음. 인강쌤들 ㄹㅇ 대단....
-
예비고3이고 내신으로 지구과학 했어요. 겨울방학때 시간이 너무 없지만 지구과학을...
-
뜨거운 물로 몸 좀 불리니까 살 거 같네요 약효가 이제 도는 건가
-
윤 측, 헌재에 답변서 제출…계엄 배경으로 ‘부정선거’ 적시 2
윤석열 대통령 측이 헌법재판소에 제출한 답변서에서 이른바 ‘부정선거론’을 언급하며...
-
뭐든지 거품이생기는듯 서울자체에 가치를 둬서 거품이아니라면 할말없다만 뭔가 가격대비...
-
나도 잘까 10
피곤하네
-
수학 커리 병호햄이랑 석원햄중 고민인데 누구들을까요 2
본인 정석풀이를 선호해서 정석풀이로 유명한 두분 강의를 좀 들어봄 솔직히 한석원...
-
덕코를 내놓거라!! 10
주세요오...냐옹
-
3때는 감흥도 없었는데
-
이번에 원광대 불인증 뜬건 중간평가라고 하던데 증원 고려한 평가는 2월 초쯤에...
-
남자아나운서를 꿈꾸는 수험생들 참고 + 서울대/ 카이 / 고려대/ 성균관대/...
-
1년 교재비 0
재수하면 보통 1년에 교재비 알마씩 쓰시나요? 재수하는거 죄송해서 12월에...
-
695따리라 못썼음 실제론 가군 고미디 나군 설인문 다군 고학부 썼음
저도예전에 질문해봤는데 돌리면 똑같아요.
직각삼각형이나오는게 의문이였는데 임의의삼각형으로 논하는거여서 사실상 위의 경우만 논해도 충분해요.
음.. 어렵네용
이렇게생각하면되요. 하나를 고정시키잖아요.
그러면 아래삼각형은 일단무시하세요.
그러면 특수한상황 일반적인상황으로 나누어져요
그러니 두개다논할이유가없죠
3-1 풀어보시면, 직사각형 PQRS의 변이 변AB, 변BC, 변AC 위에 있을 수 있기 때문에 세가지 삼각형이 나오는데, 세가지 경우 모두 공유하는 변의 길이가 1/2k (단, k=변AB or k=변BC or k=변AC) 일 때 동일한 최댓값을 가짐을 알게 되실 겁니다.
따라서 직사각형 P'Q'R'S' 를 첫번째 그림처럼 잡든 두번째 그림처럼 잡든 결과는 동일하므로, 편한 첫번째 경우로 푸는 것입니다.
그리고 사실 이런 연결형 문제는 대놓고 3-1 결과를 이용하라는 거여서...
자세한 설명 감사합니다. 좀 더 생각해봐야겠습니다 :)
3-1 풀이까지 적다가 해결하셨을 거라 생각해 지웠습니다.
그림과 같이 S=(a*l)/2 일 때 최댓값을 가지는데,
ㄱ, ㄴ, ㄷ 세가지 경우 모두 같은 삼각형이기 때문에 당연히 넓이 역시 동일하므로
a*l = b*m = c*n 이 성립합니다.
따라서 I 의 탑처럼 쌓인 경우와 II 의 경우 둘 다 같은 넓이이기 때문에 굳이 II 의 경우를 고려하지 않아도 되는 것입니다.
친절한 해설 정말 감사합니다 이해됐습니다 !! :)
설명을 너무 못했는데 이해하셨다니 다행이네요...
다시 보니 S=(a*l)/2이 아니라 (a*l)/4인데 잘못 적었네요 ㅋㅋ
ㄱ 의 경우 S = (a*l)/4
ㄴ 의 경우 S = (b*m)/4
ㄷ 의 경우 S = (c*m)/4
일 때 최대인데
a*l = b*m = c*n 이므로 세 PQRS 전부 같은 넓이라는 것을 말씀드리고 싶었는데 너무 대충 넘어간 것 같습니다..
그림처럼 P’Q’R’S’ 를 설정하는 과정이 다르고 넓이를 구하는 과정이랑 개념 자체가 달라고 결과적으로 넓이가 같다면 일반성을 잃지 않는다는 말씀이신가요??
아 죄송합니다. 어떤 부분이 궁금하신 건지도 모르고 다른 부분을 설명하고 있었네요...
계산해보면 그림의 2번의 경우 x = 1일 때
즉, 삼각형 ABC가 직각삼각형일 때 최댓값 (a*l)/3 을 가지는 것을 알 수 있는데,
돌려보면 결국 1번과 동일한 상황이라 그렇습니다.
정성스럽게 답변해주셔서 정말감사합니다!!
시간날때마다 고민하고 있었는데
덕분에 이해됐습니다. 감사합니다!!