[수학] 혹시 시험시간이 부족해?
안녕하세요
수학강사 이대은입니다.
오늘의 주제는
같은 문제를 푸는데 걸리는 시간이 다른 이유
에 대하여 글을 적어보겠습니다.
참고로 제가 수업대상이
중상위권이므로
내용이 중상위권에 포커스가 맞춰져 있음을
참고해주세요!
자 문제부터 보시죠!
눈풀로도 이해할 수 있도록
나름 가벼운 문제니
꼭 이해해보세요! :)
22학년도 수능문제입니다.
바로 본론으로 들어갈게요.
제가 수업 때 늘 강조하는 부분인
문제를 보다 빠르게 푸는 방법은
크게 봤을 때 두 가지입니다.
1. 문제에 들어있는 유형파악을 하느냐
2. 계산과정에서 주어진 모든 정보의 관계를 이용하느냐
이 두 가지를 잘할 때
남들보다 빠르게 답을 구할 수 있습니다.
위의 방법을 구체적으로 하나씩 설명해드릴게요.
1. 문제에 들어있는 유형파악을 하느냐
우선 이 문제는 크게 봤을 때
다음과 같은 두 가지 유형으로 이루어진 문제입니다.
1. 다항함수 구하기
2. 두 접선이 일치하는 경우
유형은 파악했으니
각각의 유형에 대한 풀이법을 적용시키면
답이 무조건 나오게 되어 있습니다.
위 유형에 대한 풀이법은 다음과 같아요.
유형소개를 하는 글은 아니니
풀이법만 소개하고
넘어갈게요!
빠르게 푸는 두 번째 방법에 대하여 설명할게요.
2. 계산과정에서 주어진 모든 정보의 관계를 이용하느냐
위의 예제에서
모든 조건을 해석하면 다음과 같은
네 가지의 관계식이 나와요.
함수는 삼차함수이므로
위에 주어진 네 관계식을 이용하면
삼차함수를 구할 수 있습니다.
이때
에 주어진 관계식들을 적용시키면
미지수의 개수와 식의 개수가 일치하므로
연립을 통하여 각각의 미지수를
구할 수 있습니다.
그렇지만
학생들 중 누군가는
단순히 대입하여 연립을 통해 미지수를 구하지 않고
주어진 조건들의 유기적인 관계를 파악하여
계산과정을 압도적으로 줄이는 경우가 있습니다.
에서 보면
두 점
를 지남을 이용하여 함수가
과의 두 교점이 주어짐을 이용하고,
를 이용하여
위의 직선이 접선임을 이용할 수 있습니다.
따라서 위의 관계를 이용하면
여기에 마지막 조건인
를 이용하여
최고차항의 계수만 구하면
답이 나옵니다.
이렇게 수학문제는
어떻게 푸느냐에 따라 풀이에 소요되는 시간이
많이 차이가 납니다.
물론 모든 문제가
이렇게 짧은 풀이가 있는 건 아니지만
지금 이 예제가 22학년도 수능인 만큼
무시할 수 없는 부분이죠!
이런 생각은
대단한 테크닉도, 수학적 지식도 필요한 게 아닙니다.
이런 건 태도의 문제입니다.
문제를 풀 때 태도는
습관처럼 바꾸는 게 상당히 오래걸립니다.
따라서 수학공부를 할 때
단순히 답을 구할 수 있음
에만 만족하지 않고
어떻게 구해야 가장 효율적인지
도 학습해야 합니다.
이번 글은 여기까지입니다.
글을 적기 시작한 게 새벽 4:30인데
벌써 8:55네요..
고생하기도 했고,
다음에도 유익한 글로 돌아올테니
좋아요, 팔로우, 댓글
해주시면 매우 고맙겠습니다!
정규반 수강신청 링크
https://academy.orbi.kr/intro/teacher/466/l
수학 공부법 1회 특강 신청링크
https://academy.orbi.kr/intro/teacher/503/l
공부법 특강 수강후기
1. https://orbi.kr/00067814750
2. https://orbi.kr/00067822140
3. https://orbi.kr/00067823604
수학강사 이대은
현) 오르비학원
현) 대치명인학원 중계
전) 여주비상에듀기숙학원
*2023, 2024학년도 수강생수 전과목 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
0 XDK (+1,000)
-
1,000
-
그때 조금 힘들었어서 쿨 더 돌려야겠다... 아니근데 총 댓글이 200개인데 글...
-
블라인드처리된게 있어가지고 불가능함…
-
다들 잘자요 1
아기공주님들
-
배고파서 그런가??
-
25분동안 ai랑 12
영어로통화함 크아악내일영어시험도있다구요
-
도와주십쇼
-
나의 꿈 0
성불하기...
-
...
-
사랑해요 14
정말로요
-
과탐에 남아주세요 다들 ㅠ
-
미쳤네 진짜 ㅋㅋㅋ
-
진짜조졌네 (시험은아니고수업...)
-
대학라인 0
국수영탐한 114(72) 105(51) 3 61(80) 62(84) 1 이 성적으로...
-
비문학 구조독해인가요?
-
이번 수시 경쟁률 전체적으로 작년에 비해 높아졌던데 0
그럼 올해 정시 경쟁률도 작년보다 높아져서 대부분 터지는거 아님? 이번에 일반학과들...
-
경희 국캠 다니는데 32
집 신림역 여자친구 냥대생 왕십리 살면 연애 힘들진 않겠죠 영통역에서 왕십리까지...
-
학생들은 명문대를 가려해 생각해봐 너 왜 그걸 선택해 하고싶은 말은 절대 가리지않아
-
표정을 잃어버림 6
재수기숙학원에서 1년동안 로봇처럼 공부만 하다보니 표정을 잃어버림 어떻게 웃더라,,??
-
여러분이면 뭐 고르실
-
일단 저는 스카이가고싶어서 고3 6월까지 열심히하다가 그 후에 펑펑 놀아서 수능...
-
뭐 친구?
-
본가내려갔을때 동생이 자위하다 나한테 들킴 그뒤로 좀 사이가 그렇네.. 뭔가...
-
맘 놓고 수능 ㅈㄴ칠텐데
-
생기부ㅜ 다 약대/식품으로 채웟는데 약대는 못 갈거같고
-
일단 잇츠 미 ㅋㅋ 사탐이 정답이란걸 알면서도 생운 그 철학자 사상 외우는건...
-
써주세요 박제하려는거 아님요 암튼 그럼
-
ㄱㄴㄷ체감상 ㅈㄴ 어렵던데 어케 하심??
-
부모님한테 반항한적은 없는거 같음요 혼자 몰래 베개한테 화내기
-
무물보 13
밤 샐 예정
-
이게 웬 꿀 가볍게해봐야겠당
-
참고) 동생 중딩임 아니 진짜 이거 어케 수습함? 도저히 모르겠음 1. 동생이...
-
내년에 이렇게 응시해야디
-
잠 어떻게자요 0
하 내일 졸게ㅛ디 수면패턴 왜맨날이모양이지 눈감자마자 자고싶은데 지금시간에 물어보면...
-
쵸단이랑 원하늘이랑도
-
언젠가는 가야할 흐름이야
-
무물 16
무엇이든지 물어보세요
-
국어 평소에 사설 실모나 월례 모평은 1컷은 거의 뜨는데 수능장만 가면 3으로...
-
이유도 알려주시면 감사하겟습미단 평반고 내신 1.65정도고 내신 화생지인데...
-
내년 과탐이 나을수도 있지않을까 사탐 너무 꿀통소문나서?
-
다들 진학사 칸수가 짜네 칸수가 떨어졌네 어디 학교를 가네 그러고 있을때 나혼자...
-
연대 국문과 졸업하고 어떻게해서 넥슨들어간거임?
-
이 사기꾼들아
-
밤은왜무한할것같지
-
54 100 2 98 96 봤다 이분 뭐임.. + 89 96 2 45 92 이분은또머임..
-
잠이안옴 겜할당량채워야됨 ㅇㅇ
-
모 커뮤는 의사 끌어내리기 진심이던데 그거 보먄 무슨 생각 듬??
-
도와주십쇼 0
숭컴 숭전 숭컴은 간판이라 가고싶음 숭전은 컴공이 호불호 많이 탄다는데 적성에 안...
-
사랑을 듬뿍
첫번째 댓글의 주인공이 되어보세요.