[수학] 이게 보인다면 상위권임. ㅇㅈ?
안녕하세요
수학강사 이대은입니다.
오늘 글 주제는
제목 그대로입니다.
제가 글에서 적는 것이 보이지 않는 학생이라면
혹은
보려고 노력하는 학생이 아니라면
지금하는 공부가 잘못됐을 가능성이 높습니다.
시작해볼게요.
잘 읽어보고 판단해보세요 :D
다음 문제를 보고 여러분들은 어떤 생각이 드시나요.
아마 80%의 학생들은 다음 두 가지는
떠올렸을 거예요.
참고로 이 문제의 오답률은 83.7%입니다.
여기서 위의 로그식을 지수형태로 바꿔서
두 식을 연립하면
다음과 같은 식이 됩니다.
아마 여기까지는 꾸역꾸역
도달한 학생들이 많을 거예요.
문제는 이 다음부터인데요.
아마 여기서 70% 정도의 학생들은
이 식을 적고도 속으로
So what?
이라 생각했겠죠.
근데 여기서 만약 문제에
라는 조건을 적용시킨다면
b가 1개란 뜻이므로
방정식
에서
로 치환하면 이차방정식
의 양의 실근이 한 개임을 이용하여 답을 구하면 된다.
이차방정식에서 구간에서의 실근의 개수
와 관련된 문제는 근의 분리를 이용하면 되기에
와 완전히 같은 문제가 됩니다.
그럼 결국 제가 여러분들께 물어보고 싶은 질문은
과연 위의 두 문제가 서로 같은 문제임이 보이느냐.
입니다.
아마 다들 보이지 않았으니
오답률이 83.7%나 되겠죠?
그럼 이제 두 번째 질문입니다.
위의 두 문제가 같은 문제임을 파악하기까지
필요한 수학적 개념이 과연 수학1에 있는 개념인가?
입니다.
조금 격하게 표현하면
So what?
에서
이걸 활용할 수 있느냐
입니다.
솔직히
한국어를 아느냐
와 같은 것이죠..ㅎㅎ
일반적으로
안정적인 1등급 이상의 학생들은
첫 문제와 같은 준킬러 이상의 문제에서
두 번째 문제와 같은 기본유형을
찾아내는 것을 매우 잘합니다.
그렇다면 1등급이 되려면
문제에 들어있는 유형들을 파악하는 훈련을
반드시 해야겠죠.
여기서부턴 이번 총선특강 홍보입니다.
.
.
.
4/10 선거날 총선특강을 진행합니다.
주제는 앞서 말한 것처럼
상위권이 되기 위한 앞으로의 공부 방향성
입니다.
지식의 전달이 아니므로
가볍게 이해하고 가실 수 있도록 준비했습니다.
하지만 분명 수강 전후가 큰 차이가 있을 거예요.
비록 시간과 비용이 아깝다고 느낄 수 있으나
매년 많은 학생들이 이 주제를 듣고
다른 학생들보다 빠르게 성적을 올렸습니다.
올해 수험생활에 있어
가장 가치있는 시간이 될 수 있으니
꼭 얻어가셨으면 좋겠습니다!
비대면도 있으니 시간이 부담이신 분들은 참고하세요!
물론 현장에 오셔야 많은 대화가 가능하니
되도록 현장에 오시길 권합니다!
강의 안내 글: https://orbi.kr/00067722260
그럼 이번 글은 여기에서 마무리하겠습니다.
다음에도 유익한 글로 돌아올테니
좋아요, 팔로우, 댓글
부탁드릴게요!
수학강사 이대은
현) 오르비학원
현) 대치명인학원 중계
전) 여주비상에듀기숙학원
*2023, 2024학년도 수강생수 전과목 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
화확쌍지 실채컷 뜨면 이정도로 나올 거 같은데 고대.. 갈 슈 있겠지?
-
그냥 무한엔수해야함? ㅠ
-
빨간머리 해적단 서열3위는 누구임.야솝vs럭키루 누구?
-
로스쿨 생각 중입니다 어디가 더 유리할까요? 단지 취향차이인가요? 문과인데 공대...
-
경희대 정시 환산점수 543 나와요 수시 중경시홍 썼는데 떨어지면 정시가야할듯요...
-
.
-
바램6일차 0
무언가를 간절히 바라면 그게 이루어진대요 지구 37 2컷 6일차
-
도란 케리아랑 0
같은 팀 했어서 그런가 뭔가뭔가 비슷하네 키는 아닙니다
-
페인전은 진짜 전설이다
-
수학은 정병호날두로 만점 갈겨버리고 영어는 슨티로 딱 90점 쟁취하고 사탐은...
-
기분 안 좋으면 나도 느낄정도로 티나는데
-
제목들 기출 풀어보신 지문 중 최고난도/정말 잘 만든 지문은 분야별로 어떤게 있으셨나요?
-
우선 저는 쌩삼수로 올해 광명상가보단 살짝높고 국숭세단은 안정이 아닌 성적이...
-
공부 꾸준히해서 대학 잘 갈 자신있다고 믿음이 있는상태인데 중학교 자퇴했을때...
-
나보다잘본성적표와함께... 재릅신고는112
-
텔그는 애초에 해당안되고 진학사도 표본이 너무 없어서... 대부분 고속보고 원서쓰나요?
-
어그로 죄송합니다 강기원쌤 미적 정규는 들을거고 이동준쌤 공통을 들을지 강기원쌤...
-
고등학교 자퇴 언제하지 13
작년 중3때 본 수능성적이 언미물지 80 85 3 93 95고 올해는 1학기에는...
-
현역 때 문돌이여서 한지 1 세지 2였고 고2 사문 수업 들었을 때 사문도 나름 잘...
-
셋 중에 누가 국어를 제일 잘하나요?
-
ㅈㄱㄴ 그냥 평범하게 애니프사 달고 공부 질문만 하는 계정이라 안 걸릴 줄 알았는데...
-
자야되는데... 0
(진짜임)
-
그런게되나 한번생각한건 절대못바꿈뇨 의지가없나 타고난천성을바꾸기 가능이나할까 그것도내가
-
1CD13 0
일씨디일삼.. 1CD13 1CB13 아
-
중에 누가 제일 노래 잘 부르나요?
-
으아아아 15
제가 배경화면에 성적 올려뉴ㅏㄲ는데 그게화학이 짤려서 ㅋㅋㅋㅋㅋㅠㅠㅠㅠㅠ...
-
00년생이라 지금 의대가도 전문의 37살.. 대기업 칼취했을때의 기회비용 다...
-
원래 기말 결과보고 판단하려했는데 시험 3주남기고 아무것도 안해서 차피 시험쳐봤자 거기서 거기같음
-
ㄹㅇ 언제가냐 까마득하네
-
오늘 6시간도안잤군...
-
실모의 무한굴레 1
어려운 실모를 풀었는데 점수 ㅈ됨 -> 오답을 해보니 모든 문제들이 ㅈ밥 같음,...
-
msde학과는 기계+전자+경영을 아우르는 학문을 배우는 학과로 전 수업 영어로...
-
메가스터디 환급 0
신청은 언제 하고 어디서 하는 건가요??
-
오래된 생각이다
-
오르비가재미없어 12
쓸어그로소재도 다떨어져버림
-
근데 다들 향후 계획이 군대라고 한다. 아마 나도일지도 모른다. 겨울이었다...
-
키164인데 누구 골라야하나?
-
휴학 반수 어떻게 생각하시나요? 의견 좀 알려주세요 1
전 지금 20살 여자이고 내년에 1년 휴학한 후 반수 공부를 다시 해보려고 해요!...
-
아무도 안 풀겠지?
-
선착순 전형 (국/수/영/과탐(1) 4과목 중) [수능] 3과목 합 6등급 이내...
-
아 따가워
-
고1 정시파이터이고 학교 다니는 이유가 진짜 재밌어서 말고는 없는데 2학년때...
-
재수하려고 해서 12월부터 학교 안나가고 공부하려고 하는데 안나가려면 그냥...
-
시대인재 단과 0
수학 미적분 백분위 77로 3등급인데 시대인재 엄소연T 단과 따라가기 힘들까요..?...
-
수학 기출책 2
좀 깔끔하게 정리된거 없나요? 수분감 너무 조잡해서 다른거 추천받아요
-
여전히 당근과 브로콜리가 싫고 고기 없이 밥 먹기 싫다
-
[링크] 홍익대 다군 합격 예측 사이트 만들었습니다 4
제가 만든건 아니고요, 예전에 탈르비한 동기가 코딩 공부하다 심심하다고 만들었는데...
-
안녕하세요 오르비 수능후 가입한지 11일 지났습니다 ㅎ 혹시 라인 한번만 봐주실 수...
-
점수 다르게 입력한거 아님 국수 예상 표점 차이땜에 텔그가 연고대식으론 4점정도...
-
논술 김윤환 2
어떤가요 후기좀요 ㅠㅠㅠ
좋은글이네요
최근 평가원들을 보면서 갈수록 고1때 내신에서 반복숙달한 논리를 고2때 이어붙이면서 내신을 준비한 경험이 있느냐 없느냐가 큰 차이를 만들것이라 생각했는데, 작년 9평부터 더욱 그렇게 되고있는것같습니다
중간에 수학 놓은 학생들은 더욱 설자리를 잃을것이라 생각하기에.. 바른 방향성으로 꾸준한 수학 학습을 해나가는게 정말 중요할것같네요
네네 ㅎㅎ
작년부터 고1 수학의 중요도가 올라갔죠..ㅠㅠ
그래도 학생들이 충분히 극복할 수 있는데 많은 학생들이 단순히 문제만 많이 풀면 성적이 오른다고 생각하는 점이 가장 아쉬운 부분이죠..ㅠㅠ
아니 밥먹기 전까지 40분 넘게 고민한 문제가 떡하니있는..
엇... 이 글이 조금이라도 도움이 되었으면 좋겠습니다 ;D
감사합니다
올해는 2라도 나오면 목표달성 ㅆㄱㄴ한데..
아직 많이 남았잖아요 ㅎㅎ
올바른 방법으로 공부한다면 1등급 ㅆㄱㄴ이라 믿고 파이팅합시다!
저거 어케 풀지 다 보이는데 수학 성적은 늘 안올라요 ,,,, ㅜ
혹시 기출문제라서 풀이가 다 보이는 건 아닐까요..?
정확한 건 직접 대화를 해야 되지만 처음보는 문제도 해석이 다 되는지 꼭 확인해보세요!
만약 아니라면 너무 기출만 학습해서 그럴 가능성이 높습니다!
그떈 기출분석을 조금 다른 방향으로 하시면 분명 달라질 거예요!
뭐랄까 익숙한 유형으로 느껴진?거같아요
치환하는 순간부터는 완전 전형적인 이차방정식같아서,,, 저 문제 자체가 기억난건 아닌데
약간 익숙한 느낌이었어요,,
완전 처음보는 문제로도 되는지 확인은 해볼게요 ㅜㅜ
네네 은근히 기억이 안 나는 거 같아도 잔상으로 보일 가능성이 높으니 처음 보는 문제도 같은 느낌인지 꼭 확인해보세요!
처음풀때 일케 햇엇네용
엇.. 훌륭하신 분의 교재군요 ㅎㅎ
꽤 어려웠는데 공부 열심히 하셨나봅니다 ㅎㅎ
실례지만 언제 기출인가요?
2203 21번입니다!
문제를 풀떄 어떤 생각으로 푸는지도 강의해주셧으면 좋겟습니다.
항상 새로운 낯선상황이 주어지면 못풀고 해설지 보면 이해되고 풀 수 있는 문제네 라고 꺠닫지만 다시풀면 못푸는 그런 상황이 큰 고민입니다
제가 정규수업시간에 하는 주제가 학생분이 요구한 바와 일치합니다!
늘 말하는 것이 한 문제의 풀이가 아닌 부분부분 쓰이는 풀이의 당위성을 파악하여 해당 문제만이 아닌 다른 문제에도 적용시키는 훈련을 시켜드리고 있습니다~!
혹시 도움이 필요하시다면 수업에 참여해보시는 것도 좋을 것 같네요 :D
기출분석 하면서 했던 생각이네요
오 꼼꼼하게 잘 분석하셨네요!
실력이 좋으실 것 같아요!
예전에 어떤 분이 기출문제를 기본유형의 조합으로 해석하고 정리해보라고 조언해주셔서 그대로 하고 있습니다
미분을 벅벅
특강만 따로 들을 수 있나요?
특강만 따로 신청할 수 있는 링크가 안 보여서요.
아 찾았습니다.
올려드리려 했는데!
알겠습니다!!
미적러는 왠지 미분해서 풀고 싶어지는 문제군요...
오호~~
저도 풀이 보여주세요
직접하긴 귀찮……..ㅎㅎㅎㅎ
실근1개인 경우이므로 첫번째 역함수 그래프랑 두번째 지수함수 그래프랑 접하는 상황이 아닌가여?.. 저는 그렇게 미분해서 풀었었는데 잘못된 풀이인건가
22 사관학교 13번 ㄴ보기
오
음 선생님이 말씀하신 부분까진 갔는데 근의 분리가 뭔지 몰라서 검색해봤는데 봐도 잘 이해가 안되네요 혹시 간단하게 설명 가능할까요?
근의 분리가 글로 학생분에게 전달이 다 될지 모르겠지만 근의 분리는 문제에서 요구하는 상황을 그래프로 표현하고, 대칭축, 함숫값, 판별식으로 동일한 상황을 나타내면 됩니다.
이때 축과 함숫값에 들어가는 x는 문제에 주어진 구간의 경계라고 생각하시면 됩니다!
일반적으로
안정적인 1등급 이상의 학생들은
첫 문제와 같은 준킬러 이상의 문제에서
두 번째 문제와 같은 기본유형을
찾아내는 것을 매우 잘합니다.
---------------------------------------------
정말 좋은 글인것 같습니다.
마음에 새겨 넣습니다.
제가 글을 못 쓰는 편이라 매번 쓰고도 진심이 전달되지 않는 것 같아서 아쉬운데ㅜㅜ
좋게 말씀해주셔서 고맙습니다~^^