이거 발산임 수렴임?
여기서 괄호가 무슨 역할을 함?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이번 수능 학원에서 풀어봤는데 그래도 많이 올랐어요… 미적은 아직 개념 나가는...
-
이 친구입니다. 저도 잘생긴 여우이고 싶었어요
-
뭔가 크게 배우거나 어른스러워진 건 없는 듯. 서비스직이나 멘탈 능력은 좋아짐..
-
전적대 같은 학과 진학사 텔그 둘다 1등 ㄷㄷㄷ
-
유도기전력 질문 7
과외생한테 유도기전력을 증가시키는 방법이 자속의 시간변화율 비례 or '단위길이’당...
-
작년보다 빡세던데
-
동물이나 캐릭터 일수도 있음
-
사람 별로 없어서 쉬울 듯 ㄱㄱ
-
다들 주말만 된다네..
-
https://youtu.be/yIyokCZjTPk?si=khXY6pyJkN-YBRt...
-
기습이원준숭배 1
이원준<<국어강사중goat
-
모래 마녀 2
샌드위치
-
국가가 무너질땐 보이지 않게 가장 썩어들어갔던곳이 공직인거같던데 지금 한국...
-
걔추줘 4
아침메뉴도 추천해주고 가
-
대치 러셀 0
김기현쌤 200번대 윤성훈쌤 310번대인데 언제쯤 들어갈 수 있나요..?
-
다 재릅인거 같아..
-
닉변하고싶어요 10
시즈카 이 친구 내성격이랑 안맞아서 못견디겠네
-
슬림
-
학고받으면좋은점 4
새비지해보임
-
나만빼놓고..
-
오늘꿈 4
방에서 티비로 요스가노소라 시청중이었는데 가족 난입
-
성적표도 안 나왔는데 우리가 어떻게 아냐고
-
히히 본가 내려와서 요양중
-
문제가 더러워서 그런가 1-2, 1-3밖에 기억 안 나는데.. 혹시 복기 하시는 분 계신가요?
-
다시 태어날까
-
화작 / 기하 / 영어 / 사문 / 지구1 97 / 80 / 100 / 48 /...
-
보통 교재를 만들때 한컴이나 워드중에 어떤걸 쓰나요? 과외용으로 하나 만드려고...
-
서강대도 갔다왔어여 11
화공 다니는 친구가 서강대 구경시켜줬어여 근데 친구가 다니는 곳만 소개시켜줘서...
-
뀨뀨 15
뀨우
-
사반수로 의대를 쟁취한다.
-
이분 왜 폭주하심 11
-
소수과임 지금까지 40명 실제지원 변표뜬다고 1000점 만점 점수가 막 2~3점씩...
-
기상 7
-
ㅇㅈ 12
펑
-
맞팔 하실분 6
잡담태그 잘 달아요
-
보실 분 있을까요? 성적은 11222 나왔어요 물론 씹갓용 칼럼은 당연히 아니고...
-
ㅇㅈ 14
펑
-
https://blog.naver.com/pyjlawyer/223364239734...
-
올해 정시준비하려다 크게 데이고 한학기 학교 다니고 군대가서 학종 원서만 넣어보려고...
-
코가 막 가려움 0
재채기가 나올락 말락
-
미자공 친구가 한양대 두바퀴 투어시켜주고 노천극장가서 하냥대 명물 피자를 먹었는데...
-
어제 사실 24
특정을 당할뻔 했어요 대댓글 달리면 안지워진다는걸 어제 알았답니다 이러면서 배우는거겠죠..?
-
서연고서성한중+카포지디유까지 추천해주네 엄... (내 성적표 아님) 그래고 포는...
-
재수생입니다 올해는 꼭 메디컬 가고싶은데 이 성적으로 어디까지 갈 수 있나요?
-
지각이다 4
입에 빵을 물고 달리자
-
요약 : 분만시 문제가 있어 적절한 처치를 시행하였으나 아이가 뇌성마비가 생겼음....
-
뻘글좀 줄여야지 4
너무 많이 썼당
-
1,2번은 별 탈 없이 쓴거같고 3번 수리문제도 풀이과정이랑 정답 다 맞는데 이러면...
인접하는 두 수를 하나의 항으로 묶어 줘요
근데 수렴발산여부는 어떻게 알죠?
오른쪽 급수는
(½-a) + (a-b) + (b-c) + ...
이런 꼴이잖아요? n번째 항이 (n/n+1 - n+1/n+2)라고 할때 n번째 항까지의 합은
(½-a) + (a-b) + ... + (n/n+1 - n+1/n+2) = ½ - n+1/n+2가 되고
저걸 n이 무한히 커지는 극한을 취해 보면 -½이 되2ㅛ
제n항까지의 합을 살펴 보면
왼쪽 급수는 어느 순간 마지막 항이 음수일 수도 있고 양수일 수도 있는데
오른쪽 급수는 언제 보더라도 항상 (양 음)이 더해짐
그럼 오른쪽 급수 수렴값은 어떻게 아나요?
위에 썼음
수열 a_n의 합을 S_n이라고 할 때
급수 S_n이 수렴한다면 일반항 a_n은 0으로 수렴한다
이건 알고 계시죠?
이 명제의 대우 명제를 취해 보면 일반항 a_n이 0으로 수렴하지 않는다면, 즉 발산하거나, 수렴하더라도 0이 아닌 값으로 수렴한다면 급수 S_n은 발산해요
근데 저기 사진에서 왼쪽 급수는 발산하잖아요? 홀수 항은 +1, 짝수 항은 -1로 수렴하니까.. 그니까 왼쪽 급수는 발산이라고 바로 판단할 수 있음
근데 어떤 명제가 참이라고 해서 그 역이 참이라는 보장은 없잖아요?
그래서 일반항 a_n이 0으로 수렴한다고 해서 꼭 S_n이 수렴하는 건 아님 그래서 실제로 값이 어떻게 되나 조사를 해줘야 됨
사진의 오른쪽 급수는 일반항이 0에 수렴하잖아요? 그러면 바로 수렴이라고 판단하는 게 아니라, 수렴일 수도 있고 발산일 수도 있으니까 조사를 해줘야 됨
와 감사합니다...