[칼럼] 수학 실력 올리는 방법 (1) : 귀찮아하기
안녕하세요. 박민수T 입니다:D
칼럼으로 어떤 주제를 가져올까 하다가, 제가 생각하기에 제 수학 실력이 올랐던 비결(?)들에 대해 조금 공유해보면 좋을 것 같아 '수학 실력 올리는 법' 시리즈의 첫 번째 칼럼을 작성해 보고자 합니다. 앞으로도 꾸준히 칼럼을 올릴 예정이니 팔로우와 추천 환영입니다.
수학 실력 올리는 방법 (1) : 귀찮아하기
수학 문제를 효율적으로 풀기 위해서는 귀찮아해야 합니다. 보다 정확히 말하자면, 어떤 계산을 하기 전에 어떻게 하면 조금이라도 더 편하게 계산할 수 있을까 고민해 보는 과정을 거치는 것입니다.
다음 상황들에 대해 하위권 A친구와 상위권 B친구의 풀이를 비교해 보도록 합시다.
※ 필독 ※
모두 임의로 만든 예시입니다. 물론 오르비에는 중상위권 친구들이 많이 분포하기 때문에 하위권 학생의 예시처럼 푸는 사람이 거의 없을 수도 있지만, 맥락을 이해해주시면 감사하겠습니다. 또한 하위권 예시로 든 풀이 방식이 잘못된 것은 절대 아닙니다. 다만 더 좋은 계산들이 존재한다는 것이죠.
1. 문제 조건들을 통해 사차함수 f(x)를 결정한 상황에서, f'(5)를 구해야 하는 상황.
<하위권 학생의 풀이>
하위권 학생은 f(x)도 주어졌고, f'(5)를 구해야 하니 f(x)를 일단 미분합니다. 그러고 5를 대입해서 답을 구합니다.
정석적인 풀이라고 볼 수 있습니다. 하지만 계산이 복잡하고, 계산이 많으면 실수로 이어질 수 있습니다.
<상위권 학생의 풀이>
상위권 학생은 f(x)를 선뜻 미분하기보단, f(x)의 개형을 통해 f'(x)를 바로 작성합니다. f(x)는 최고차항의 계수가 1인 사차함수이니 f'(x)는 최고차항의 계수가 4인 삼차함수일테고, 근들은 그래프를 통해 확인할 수 있습니다.
2. 주어진 시그마를 계산하는 상황
<하위권 학생의 풀이>
하위권 학생은 시그마를 계산하기 위해 일단 전개합니다. 그리고 시그마의 성질을 이용하여 1부터 13까지와 1부터 3까지 시그마의 차로 나타낸 후, 자연수의 거듭제곱의 합 공식을 이용해 복잡한 계산을 해나갑니다.
<상위권 학생의 풀이>
상위권 학생은 무턱대고 전개하기 전 생각을 합니다.
'k에 4부터 13까지 들어간 상황을 생각해 보니, 결국 1부터 10까지 거듭제곱의 합과 같겠다'
그래서 위와 같이 시그마를 변환하고, 쉽게 값을 계산합니다.
여기서 상위권 학생은 생각합니다.
'다른 경우에도 적용할 수 있을 것 같은데, 일반화 시켜보면 좋겠다.'
이렇게 상위권 학생은 자신만의 공식을 만들고, 공식의 상황을 다시 한 번 되새겨 봅니다.
시그마의 구간 양 끝에 p만큼을 더하면, f(k)에는 k에 k-p를 대입한 것과 같구나!
3. 삼차함수의 식을 작성하는 상황
어떤 문제에서 위와 같은 조건들을 뽑아냈고, 최종적으로 f(x)의 식을 결정해야 하는 상황입니다.
<하위권 학생의 풀이>
하위권 학생은 일단 f(x)를 ax^3+bx^2+cx+d 꼴로 둡니다. 그리고 문제 조건들을 통해 a, b, c, d에 대한 식 4개를 만들고 연립을 할 시도를 합니다.
<상위권 학생의 풀이>
상위권 학생은 문제 조건들로 f(x)의 그래프적 특징을 파악하고 미지수 k만을 이용해 f(x)를 바로 작성해 버립니다. 그리고 f(0)=4 조건을 통해 k값을 구하고 f(x)를 완성합니다.
4. 사차함수의 정적분 값을 구하는 상황
조금 작위적인 상황을 가져와 보았습니다.
<하위권 학생의 풀이>
하위권 학생은 역시나 일단 피적분함수를 전개합니다. 그리고 매우 복잡한 계산을 시도합니다. 과정은 생략하겠습니다.
<상위권 학생의 풀이>
상위권 학생은 피적분함수를 관찰하니 x=4에 대칭임을 확인했습니다. 그리고 이대로 적분하기보다는
x축 방향으로 -4만큼 평행이동하고, 우함수의 정적분을 활용하고 싶어집니다.
과연 하위권 학생이 상위권 학생의 풀이법을 구사하지 못할까요? 그렇지 않습니다. 하지만 하위권일수록 풀이를 한줄 한줄 작성하며 추가적인 생각을 하기보다는, 일단 어떤 것이든 해보려는 경향이 있습니다.
계산을 하기 전에, 귀찮은 계산을 편하게 하려는 궁리를 해보는 습관을 가지면 수학 실력이 향상될 수 있습니다.
그 과정에서 일반화 시킬 수 있는 좋은 계산법이 있다면, 노트에 정리해 놓으면 좋겠죠.
이런 사소한 것들이 쌓여 30문제의 전체 문제 풀이 시간이 단축되고, 100분동안 풀 수 있는 문제의 수는 많아질 것입니다.
궁금한 점 있으면 댓글 달아주시면 감사드리겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
23보다 1컷 4점정도 높으니까 100점 141~142 96점 138~139 정도가...
-
지2 만표 70으로 잡던데 1.일단 작년 대비 시대 평균 고득점자 압도적으로 낮음...
-
혼란스러운 오르비에서 10
난 맞팔구를 외친다 잡담태그잘달아요
-
이쁘면 내꺼야 흐흐흐.
-
절망하는건 6일 뒤에 해도 늦지 않아요~ 두번 절망하면 슬프잖아요?
-
그만 놀려주세요
-
연대 공대 스나 해볼만한가요
-
2컷이 47~48이려나?...
-
한국 버튜버 혐오함? 서로 싸우고있네 둘 다 똑같아보이는데
-
다이아 28개 캤다. 뿌듯하다
-
이렇게라도 기분 낼래
-
ㅋㅋㅋㅋ 씨발이네
-
일단 확실하게 사탐 괴물만 뽑는듯 시간 개빡빡하고 문제도 개 어려움..변별은...
-
풀면서 느낀점은 그냥 ㅈㄴ 꼼꼼히 읽어야 풀린다는거였음
-
수1수2미적 1
개념 진도 한번에 나가는데 다들 몇개월 걸림?
-
표본이 메가나 ebs가 더 많아서 더 정확하지 않나요? 먼가 난리 난 분위기인거같길래
-
인문학, 자연과학, AI기반 3가지 그렇다고 특정 전공만 할 수 있는 것이 아니라...
-
오늘 일병 담 9
드디어...ㅋㅋㅋㅋㅋ 26년 ㄹㅇ 까마득하다 예전엔 그냥 감조차 안와서 아무 생각이 없었던 거였어
-
저도 뉴진스 노래 좋아하고 잘되면 좋겠다고 생각하지만 다들 수능 공부 많이 하셨으니...
-
병역메타나 합시다 15
군대 다들 언제쯤 가시거나 다녀오셨어요?
-
시대 70-72라는거같던데 하ㅠㅠㅠㅠ 걍 ㅈㄴ 우울하네
-
탐구 망쳤는데 중경외시는 될까요.. 화작 97 확통 88 영어 2 사문 45 세계사...
-
갈 데도 애매하네요 ㅠㅠ
-
난 좀 보내주면 안되나 엉엉
-
공통 1틀인데 표점 140 가능?
-
어디갈수잇지
-
내 범고래가!!
-
저는 한 달 뒤 1월 1일이 되면 옯갇님이 돌아오실 거라고 믿어요 6
그러합니다...
-
저는 남붕이같나요? 33
남붕이처럼보일려고 노력많이했었는데
-
사실저도여붕이임 5
네
-
심연이다...
-
저도 사실... 2
https://orbi.kr/00070189292/여기-합격-뱃지-달고-있는-옯비언-...
-
메인 처음가봄 2
신기하군
-
언매 92(공통-8) 1가능성 잇을까요..? 원래 메가 빼고 대성 진학 ebs 부산...
-
숙대 맛집 추천 0
중식당 여기 한번 가봐라 존나맛있다
-
패딩입었는데도 덜덜 떨림
-
수능 수학 범위 내에서 불호가 가장 높은 과목은 수1일 수밖에 없는 듯 수2,...
-
딸 수 있음?
-
겨울 느낌 노래 8
좋아요
-
망해가는 수능판에서 수능 커뮤인 오르비를 살릴 수 있을까? 망령분들 말 들어보면...
-
부산대의대 근황 0
어차피 혈액종양은 돈도 안되고 하는데만 하는 분야라서 말이지 오죽하면 몇몇의대는...
-
얘가 오늘 생일이에여 그래서 생일 축하문자 보낼려고 했는데 얘가 200일 된 남친이...
-
채수빈이 진짜 10
남자들한테 호불호 잘 안갈리는 미녀아닌가
-
이전 글 : https://orbi.kr/00070005760 위 링크로 가시면...
-
근데 컵 들고 마실 때 새끼손가락 이거 왜 이러는 거임 12
이러는 사람 되게 많더라
-
2등급은 나오겠지......? 나 대학 가야되요 시발
와 주변에 수학 잘하는 친구 풀이가 몇줄 안되길래 물어봤더니 딱 저렇게 플더라구요.. ㄷㄷ
수학 실력이 오를수록 풀이가 최적화되는 경향이 있죠:D