수학은 정석 풀이가 마음 편합니다
작년 6월 교육부가 발표한 킬러문항 사례에서
"일반적으로 대학에서 배우는 '테일러 정리' 개념을 활용하여 해결할 수" 있기에
"심화학습을 한 학생은 출제자가 기대하는 풀이 방법 외 다른 방법으로도 문제를 해결할 수 있"다는
부분은 타당하다고 생각합니다.
사실 기존에 볼 수 있던 대부분의 삼각함수 극한 도형 문항들은
위의 세 근사식을 (theta가 0에 충분히 가까울 때 적용 가능한)
기억해두면 교육 과정 상에서 학습하는
sin(x)/x의 x=0에서의 극한을 이용하지 않아도
논리적이고 쉽게 답을 낼 수 있었습니다.
f와 g의 식을 구한 후 각각 근사하여 접근하면
최저차항인 theta가 날아가 답을 낼 수 없던
2023학년도 수능 미적분 28번의 경우에도
sin, 1-cos, tan 함수의 항을 하나씩 더 살려
theta에 관한 다항식 연산을 최저차항에 초점 두고
이어가면 3f-2g를 theta에 관한 단순한 다항식으로
정리해낼 수 있었습니다. 하지만
원주각과 중심각의 관계, 원 위의 점과 원의 중심을 연결, 닮음 등
논증 기하적 성질들을 적용해 필요한 선분의 길이를 구하고
f, g를 theta에 대한 식으로 작성해내면
3f-2g도 깔끔한 식으로 정리해낼 수 있었습니다.
저는 그래서 수험생분들께서 이런저런 실전 개념을
익혀 문제 풀이에 적용해보시기 전에
충분한 정석 풀이 훈련을 거치셨으면 좋겠습니다.
어떤 풀이든 충분한 훈련을 거치면 빠르게 구사하여
시간을 확보해낼 수 있습니다.
특히 대학수학능력시험은 하나의 풀이로 풀 수 있는 문항보다
다양한 풀이가 존재하는 문항이,
어려운 문항일수록 사고 과정의 각 부분에서
여러 분기점이 발생할 수 있는 때가
어렵지 않게 발견될 수 있는 시험이라 느꼈습니다.
제가 한완수를 좋아하는 이유이기도 하지만,
한완수는 part2에서 실전 개념을 익히고 연습해보기 전에
part1에서 충분한 시간 동안 교과서 개념과 정석 풀이를
익혀보도록 합니다.
꼭 수학이 아니어도 항상 정공법대로 학습을 마무리해보시고
그 이후에 시간이 남으면 실전 개념을 익혀보시고 탐구해보시고
그렇게 2025학년도 수능을 대비해 보시면 어떨까 싶습니다.
피아노 연주를 배울 때에도 음 하나를 누를 때
손가락 끝에 힘이 제대로 들어가지 않으면
모차르트, 베토벤과 같은 세계적인 음악가 분들의
곡을 연습하기 전, 한 음 한음 제대로 누르는 연습부터
하게 됩니다. 그 기본이 되어야 멜로디를 연주할 수 있고
셀 때는 세게 여릴 때는 여리게 연주할 수 있기 때문입니다.
수학은 초등학교, 중학교, 고등학교 1학년 때 공부해온 것들이
쌓여 고등학교 2학년, 고등학교 3학년 때 배우는
공통 과목인 수학I, 수학II와 선택 과목인 미적분, 기하,
그리고 확률과통계의 문항들을 연습하는 영역인 만큼
한 음씩 누르는 단계부터 차근차근 쌓아올리셨으면 좋겠습니다.
2025학년도 수능 대비하시는 수험생 분들 모두 응원합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다들 수고하셨습니다 10
。◕‿◕。
-
1타충임 8
사실 누굴 들어도 상관없을거 가타서 1타 들음
-
나랑 사귈래?가 어울리는 사람이 있고 너랑 사귀고 싶어가 어울리는사람도 있는듯 고백멘트에정답은없다
-
님들은 0
사람들끼리 밸런스 안 맞는거 가틈? 전 종합적으로 능력치 보면 꽤 맞는거 가튼데
-
여기서 첨 들어봄
-
나도 목표,꿈 정하고싶음 학교는 있어도 학과는 모르겠음 솔직히 하고싶은거 없음 그냥...
-
나 어릴때 0
전재산 투자해서 이상한 주식 산 직후에 뛰어내려서 몇년뒤에 깨어났더니 주식 떡상해...
-
스무살 되기 시름 10
안 되는 방법 공유 좀
-
열아홉인데 4
짝사랑해본 적 없음 어캄
-
주사안맞고 모든 병 치료하는방법 누가 개발해달라고 주사무섭다고요
-
롤이란 그런거지
-
2월 7일 딱 기다려
-
복습할 거임
-
알빠노 마인드긴 함
-
한의학효과좋은데 1
ㅇㅇ
-
역이 있다고는 안 함
-
ㅈㄱㄴ
-
미적 하셈 4
미적 좋음
-
ㅇㅇ
-
신경쪽 이상있어서 못걷거나 죽어가는걸 한의술로 치료하는거 보면서 세상은 참 넓구나 느낌
-
설의는 다음생에 가는걸로
-
ㅇㄸ
-
ㅇㅇ
-
수학 선택과목 2
공통1틀 미적3틀입니다 미적 3문제는 확실히 몰라서 틀린거같은데 계속 미적하는게...
-
미국 지진 났고 엔디비아 이 두개가 문제네
-
한 10년은 지난 애니일템데 너무 잘만듬..
-
시대에 맞춰 개정을 할 필요가 있지않나 싶음.. 기와 맥이흐르는... 어쩌구...
-
잘자라구해주세요 11
네..
-
ㅇㅇ
-
심심해
-
163 75 살면서 모배에서 연애 한 번이 전부였고 썸은 오르비언이랑 썸 타본 게...
-
거대거대한 흑역사의 순간이 떠오름
-
1년치 댓글 오늘 다했노 ㅋㅋ
-
알파남 특 2
오르비에 맨날 ㄱㅁ ㄱㅁ거림 기만자새끼들 ㅇㅅㅇ ㅇㅅㅇ
-
나 쌩재한다고 하셨을때도 부모님이 뭐라안하시고 암튼 꼭 올해 잘봐야할거같네요 올해도...
-
. 2
국:수:영:탐 5:2:1:2 3월 1일까지
-
기대를하는 내가 밉다
-
사랑하면 왜 술처먹고 죽는다하구 그러는지 모르겠다아아 내가 제일 소중하다면서 날 힘들게함
-
풀떼기 투척 1
아가베 우타헨시스
-
학생복지스토어에 3
s25 울트라 품절됐네 ㅜㅜ
-
경희주보에서 갖고 온건데 2011년부터 2024년까지 공무원 연평균 임금인상률은...
-
나한테도관심줘 0
너네까지나한테이러면안되는거잖아
-
개많이떨어진거같지만 크게보면 아직까지 떨어질게 많다는거임 저게 고작 2년만에...
-
수힉을 그렇게 많이하고도 96 100이 안나오던 이유를 알겠음.. 항싱 겨산꼬이거나...
-
풀떼기 더 보여드릴가요 13
50종류 넘는 풀떼기들과 동거중
-
프사변경완 0
레어랑 똑같은거 찾아옴
-
최고로 화났을때 침대에서 발로 이불 찼었음
-
조금만 더살까
-
슬퍼서 눈뮬을 머금고 삭제를 해요
Wow
221129는 좀 잘못 만든 문제 같음
현장에서 음... 하다가 정삼각형 한 변의 길이 a로 두고 sin법칙 돌리니 a 식 작성할 수 있길래 다행이다 하고 답 냈던 기억이
저는 개인적으로 220628이 더 무서웠네요 ㅜ 근사에 근사에 근사에 근사를 하니 겨우 답 2? 나왔던
저도 실전개념,스킬들 위주로 문제를 푸는편이고, 실제로 올해 수능에서도 스킬위주로 모든 문제 다 풀어나갔는데 그 이전에는 정석풀이로만 문제를 풀었었고
정석풀이를 할줄 모르면 스킬을 알고, 그걸로 문제풀이를 하더라도 본인의 풀이에 확신은 못가지는듯요 ㄹㅇ
사실 수능 현장에서는 내 풀이에 확신이 들어야 다음 문항으로, 다음 페이지로 넘어갈 수가 있고 OMR마킹 한 후에 아직 못 푼 문제에 시간을 투자할 수 있는데... 정석 풀이 대충 해보고 실전 개념만 익혔더라면 말씀하신 것처럼 현장에서의 제 풀이에 확신이 들지 않아 계속 검토하다 88점도 못 넘겼을 것 같습니다
그냥 교육부 억까가 좀 심함 저는 스킬 하나도 안배우고 푸는데 50분씩 남던데
중앙대 의대 ㄷㄷ
사실 정석 풀이에 최소한의 실전 개념만 익혀도 괴물 같은 풀이 속도 보일 수 있죠
한때는 이런 수능 수학 문풀에 회의감을 느끼신 걸로 아는데 지금은 어떻게 생각하시나요?
수능 수학 학습과 관련해 2022학년도 수능을 준비하던 때 혹은 2022, 2023년과 비교할 때 크게 바뀐 생각은 없습니다. '이런 수능 수학 문풀'이 정확히 무엇을 뜻하신 것인지 말씀해주시면 그에 대한 생각도 남겨두겠습니다!
정석 풀이 말씀하신 것이라면 예나 지금이나 교과서 개념에 기반한 풀이부터 똑바로 익히자,, 라고 학생들께 말씀드리곤 합니다.
삼차함수의 비율관계 같은 쓰잘데기 없는 거 공부해서 대학 왔더니 또 무슨 쓰잘데기 없는 거 단순 암기시켜서 시험 보고
한국 최고의 사립대학 중 하나라 평가받는 학교에 온 사람들이 기본적인 상식도 없고 자기 생각을 논리적으로 말하지도 못하고 오로지 관심 있는 것은 수업 째고 술 마시는 거고 그나마 할 줄 아는 건 쓰잘데기 없는 수능 문제 풀기라는 사실
- 태재대 관련 글에서
본문은 교과서 개념에 기반한 정석 풀이의 중요성과 불필요한 실전 개념의 활용을 지양하자는 뜻을 담고 있고 이는 '삼차함수의 비율관계 같은 쓰잘데기 없는 거'를 지양하는 맥락과 일치합니다!
사람마다 생각이 다르겠지만 저는 개인적으로 실전 개념 익혀 문제 풀이에 적용하는 공부보다 '삼각함수가 무엇이야?'라고 초등학생이 물었을 때도 논리적으로 설명해낼 수 있는 방향의 공부, 직접 실전 개념을 하나 하나 찾아보고 증명해가며 그 증명 과정에 초점을 두는 공부가 개인의 수학적 사고력 향상에 더 도움이 될 수 있다고 생각하는 편입니다.
다시 말해 문제를 빠르게 풀어내기 위해 이런저런 실전 개념들을 익혀와 답 내는 데에만 초점을 두는 학습보다 사고력 향상과 지식의 확장, 그리고 논리력을 길러가기 위한 교과서적 풀이를 익혀가는 과정에 초점을 두는 것이 좋다고 생각합니다! 전세계에서 수학이라는 학문을 어릴 때부터 가르치는 이유가 사고력과 논리력 향상에 일부 있다 생각하는데 공식과 성질 몇 개 소개하고 문제 풀게 하는 현재의 한국식 교육 대신 개념 하나를 설명하더라도 몇 페이지의 글과 예제를 소개하는 영어권 문화식 교육이 더 좋다고 생각하고 있습니다.
또한 인용해주신 아래 표현의 경우 이전에도 밝힌 바 있지만 어그로를 위한 과장이 맞습니다, 항상 일반화는 조심해야한다고 생각합니다~~
근데 개념 기초도 중요한데
다 쌓이고 난다음에는
어떻게든 어떤 상황이든
더럽든 어렵든 쉽든
실수없이 점수 무지성으로 챙겨가는
실전 스킬이 필요한거같아요
정갈하게 답안지 처럼 안풀고
야만스럽게 대입 수치 길이측정
근사값구해서 때려맞추기 개수등등등
제가 그래서 9평 3등급 수능 1등급 백분위
99퍼 나와서요오
실전스킬이랑 계산실수 줄이기
악귀같이 점수챙기기
그래야 악귀같이 시험에서 점수 챙겨서
우아지게 고급지게 도도지게 입시성불각
맞습니다만, 그래서 백분위 100이 안 나온 것은 아닐지 생각해보시면 좋을 것 같습니다
입시 오래안하고 빨리 최대치 뽑고 성불하는게 목표였어서요 ㅠ
ㅋㅋㅋㅋ 현명하십니다!!
사실 원점수 100점 받아야지 하고 교과서 개념이니 실전 개념이니 하는 것보다 적당히 개념 공부하고 풀이과정 논리적으로 작성해보다가 실전 개념 익히고 n제/실모에 열심히 적용해보아 수능에서 1등급 받고 대학 가는 것이 저도 최고라고 생각합니다.
9월 모의고사 때 3등급이 나오면 멘탈이 흔들릴 수 있는 상황이라 생각하는데 멋지게 수능에서 백분위 99 받아내신 것 진심으로 축하드리고요 이렇게 학습 경험 댓글로 나누어주셔서 저도 감사드립니다. 정시 원서 접수 하셨다면 합격을 응원합니다, 조만간 좋은 소식 있으시길 바랍니다!!
네 감사합니다! 중고딩때부터 시험은 시험일 뿐 여기서 고차원적인 어떤가를 탐구하려고 하기보다 ...
점수만 최대한 어떤수를 써서라도 잘받는게(컨닝노) 중요한거같아여ㅠ오래안끌고
감사합니다
동감합니다!! 교육계로 나아갈 것이 아니라면 수능뿐만 아니라 어떠한 시험, 난관에서 목표하는 바만 깔끔하게 이루고 다음 단계로 넘어가는 것이 현명하다 생각합니다
한완수 파트1하고 파트2대신 뉴런하는건 별로 일까요?
좋다고 생각합니다! 한완수를 파트2에 초점 두고 실전 개념서라 부르시는 분들도 계시지만 저는 개인적으로 파트1에 초점 두고 사고과정을 논리적으로 정리해보는, 교과서 개념에 초점을 두어볼 수 있는 기회를 제공 받을 수 있는 자료라 생각해서요
실전 개념은 꼭 한완수 파트2가 아니어도 말씀하신 현우진 선생님의 뉴런 등 다른 학습 자료들로 충분히 익힐 수 있다고 생각합니다.
답변 감사합니다