sootak 모의평가 2회 문제지, 답지, 간략해설(스포주의)
시험지.pdf
정답표.pdf
주요문항 간략 해설 및 접근방법
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인증메타후기 4
나랑같이n수해서의대가자
-
자야지 1
눈이 감기네
-
후다면 너무 슬플거같음
-
문재인 정부 사드 도입 늦추기 위해 중국·시민단체에 기밀 유출 의혹…검찰 수사 착수 1
문재인 정부 당시 안보라인을 책임지던 고위직 인사들이 사드(THAAD·고고도 미사일...
-
흠
-
스펙 평가좀 2
숏치고 조졋음뇨
-
아니면 무조건 시험 종료시까지 고사장에 있어야하나요?? 대학 시험처럼 시험치고...
-
형아... 3
웅웅
-
어디가 좋을까요?
-
턱걸이 20개는 땡겨야 남자라고 생각함뇨이
-
S7 액정이 좀 깨져서 터치가 좀 답답해졌어요ㅠ 액정가는데 16만원정도...
-
'사드' 지연 위해 중국에 2급 기밀 유출…도마 오른 文 정부 안보관 0
전임 문재인 정부와 더불어민주당의 안보관이 도마에 올랐다. 최근 감사원이 문재인...
-
ㅇㅈ 13
펑
-
입실시간 제외 순 시험시간이요!!
-
ㅇㅈ 6
펑.
-
진짜 완벽한 고대상이다..
-
옛날엔 현실의 예쁜 사람 보면 기분 좋아지고 그랬는데 이제는 그냥 아무런 감정이...
-
ㅇㅈ 13
못 생김 주의) 펑
-
ㅠㅠ
-
여잔데 친구없을까봐 ㅇㅇ
-
본거또보고 17
다음에혼자인생네컷이라도찍으러갈께요
-
ㅇㅈ 4
펑
-
아무도 안 보겠지???
-
재탕올리면 본거또보고 라고댓달릴 확률99%라 못하겠어요
-
원래 멀티를 개잘햇거든요? 근데 요즘은 하나에 꽂히면 그냥 그것밖에 못해요 예를들어...
-
"도미노 현상" 공장 줄줄이 폐쇄…'K-철강' 쇠퇴의 그늘 0
산업의 쌀이라 불리는 한국의 철강 업체들이 줄줄이 공장 문을 닫고 있습니다. 중국의...
-
요즘 헬스하는데 0
진짜 근육통이 너무심함 미치겠따
-
일주일에 150분 이상 운동했더니 나타난 효과... 평균 사망 위험 22% ‘뚝’ 0
빠르게 걷기, 자전거 타기 등 중강도 신체활동(PA)을 일주일에 150분 이상 하면...
-
ㅇㅈ 2
사실 그런 건 없고 제가 좋아하는 민지 짤 보고 가세요
-
거기 지나가는 당신! 31
여캐일러 하나 주고 가요
-
그것은 바로 주식 안 하기! 주식 하는 사람들이 돈을 잃기에 나는 가만히 있으면...
-
쪼끄매서 귀여움
-
ㅇㅈ 16
숏충이의말로ㅇㅈ
-
물2 어카디 10
현역이고 물1베이스 나름 있는데 1) 물2 과외받으면서 전적 의존(나름 고수에...
-
욕하고는싶었는데 대댓달려서 박제당할용기는없는거임?
-
아니나성희롱당한것같음 11
여행중길거리를지나가다가가게아저씨가컴인싸이드라고했는데 이거이상한뜻맞죠어떻게이런말을할수가있죠?????
-
궁금
-
표본 들어오기 전보다 칸수 올랐나요
-
아이고야.. 0
내일 학원이 있었구나.. 일찍 일어나야 하는데 음 내일의 내가 해결해 줄 거야
-
쳐띄우는 거임 진짜 꼴도 보기 싫은데 경기 할 때마다 봐 진짜
-
자야지 자아지 자지 ㅗㅜㅑ
-
“이건 소름이 돋는다” 섬뜩한 여성 정체…알고보니 ‘아연실색’ 1
영상 생성 AI로 만든 영상 [출처 오픈AI] [헤럴드경제= 박영훈 기자] “소름이...
-
자야지 3
-
질문받겠습니다 26
안녕하세요
-
그건 바로 흑인 프사의 "오.쓰.오.억"
-
수고했어 오늘도 6
-
육군 기행병 13
어떤가요?
-
공통수학인강이슬슬나오는걸보면기분이이상하다
-
스스로 총 쏴 얼굴 잃었던 美남성, 안면이식술로 새삶 2
미국에서 총으로 극단 선택을 시도해 얼굴이 손상됐던 남성이 안면 이식 수술을 받고...
14번, 28번 풀이 부탁드려요... 간단하게 댓글로라도 괜찮으니...
14번
접점의 x좌표를 t라 합시다.
p+t=sqrt(e) - 포물선의 정의
a^2t=4pt (포물선 위에 점이 위치할 조건)
a^t ln a = 2p/a^t (접선의 기울기가 같을 조건)
식을 잘 정리해 주시면 a^2t=e가 나와서 두번째 식에 대입해주시면 pt=e/4가 나옵니다.
첫번째 식과 연립하면 이차방정식을 풀어 각각 구할 수 있겠죠.
ㅠㅠ 너무 어렵습니다
저도 14번, 28번 풀이필요한데... 댓글 써주시면 감사하겠습니다...
28번은 2Hm * 3Hn 해서 m이 1,2,3일때 나눠서 구하시면 되어용
엥...틀렸네요...죄송합니다 다시 구해봐야지
4점짜리 나오자마자 멘탈 승천... 4점짜리는 20번 말고는 모두 포기했어요.
3점과 4점의 변별을 확실히 한다고 한 것이 너무 과했나요..ㅜ
허허허허...할말이없습니다. 더 열심히할게요ㅠㅠ
전..15,21,30번이요..ㅠㅠ
//출제자님께서 직접 풀이해주셨네요... 제 풀이보다 훨씬 나으신거 같아서 그냥 지울게요
14번 접점 미지수 잡고 공통접선임을 나타내면 미지수가 p에 관해서 정리된 식이 도출됩니다.
결국 PQ의 길이는 p+접점의 x좌표이므로 p로 표현이 가능하며 이에따라 p에 대한 2차방정식을 푸시면 됩니다.
21번//
잘리는 부분 넓이가 5π. 접점P(a,b,c)라 하면 접평면, x+√3y=4, xy평면의 법선벡터들로 정사영 2번내리는데 필요한 코사인 값을 각각 구할수있음.
하나는 2/3 이고 하나는 c/3.
즉, 구하는 값은 5π X 2/3 X c/3 =10c/9π 의 최대 최소의 합. 따라서 c의 최대와 최소를 구해야 하는데 그림을 공간좌표상에 그려보면 b가 0일때 c가 최소 최대가 나옴을 알수있음.
따라서 a^2+c^2=9 와 a+√3c=4 를 연립 후 근과 계수의 관계로 c의 합을구함(최대,최소)
그러므로 답은 20√3π/9
근데 15번에서 왼쪽식속미분햇을때 왜 3x^3이 아니라 2x인가요????
f(x^2)함수의 한 부정적분을 F(x)라고 하면 F(x^2)을 미분하는 것이 됩니다. 그러면 속미분으로 2x가 나오게 되지요
1컷 몇점이에요..? 개 어려운데.. 난이도 하향하신거 맞나요? 1컷 어느정도 예상하고 출제하셨나요..?
ㅠㅠ 난이도 조절에 실패한 제 잘못입니다. 17, 18, 19, 20이 쉬워서 괜찮을 줄 알았죠.. 21, 29, 30정도가 최상위권과 상위권을 변별할 것으로 예상했는데 의외로 14, 15, 28번에서 큰 어려움이 있었던 것 같습니다. 2번 시행한 경험으로 다음에는 더 적절한 난이도로 돌아오겠습니다.
아 28번 이해가안되는데 중복조합??써서 푸는건가요? 알려주시면 감사하겠습니다 ㅠㅠ
a^p b^q c^r로 표현되는 건 이해되시죠? 이제 (p, q, r)의 순서쌍 개수를 찾는 문제가 되어버립니다. 여기서 p, q, r의 조건을 찾아서 중복조합을 이용해서 개수를 구하는 것이 접근 포인트입니다. 그렇다고 p+q+r=m+n에서 바로 3Hm+n라 하면 안되는 것이 c의 차수 r은 오른쪽 식에만 있기 때문에 n보다 커질 수 없습니다. 이를 반영하면 r=0일 때 2Hm+n, r=1일 때 2Hm+n-, ..., r=n일 때 2Hm이니 이들을 다 더하면 (m, n)의 성분이 나오는 것입니다.
아이고 어려워...
1회에 이은 불..
하.. 전왜 다들 맞추는걸 틀렷는지 ㅠ26,27번 해설좀 부탁드려요 ㅠ
26번은 어렵게 생각하실 필고없이보통 무리방정식 풀듯이 루트 한쪽을 넘겨서 제곱하고 정리해서 다시 제곱한 후 정리하면 삼각방정식이 나옵니다. 합성한 후 일반해, 시그마계산까지 호흡이 긴 문제일 뿐입니다.
27번도 타원의 방정식 세우고 x=1일 때 y를 표현한 다음 접선방정식 공식에 대입하면 직선 식이 나오니 넓이조건으로 타원방정식을 완성할수 있겠죠.