눈풀가능?
삼차함수 비율관계로 마무리됩니다.
인수의 관점에서 x를 묶은 뒤에,
나머지 부분을 관찰한다고 보셔도 돼요.
끝!
#무민 #짧은칼럼
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
삼차함수 비율관계로 마무리됩니다.
인수의 관점에서 x를 묶은 뒤에,
나머지 부분을 관찰한다고 보셔도 돼요.
끝!
#무민 #짧은칼럼
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
2026 수능D - 333
2017년 11월 고2 학력평가 가형 30번이 생각나네요 ㅎㅎ
이 문제인가요?!
그렇습니다.
걸어다니는 평가원 아카이브 ㄷㄷ
심지어 평가원이 아니구나
맞췄당 ㅎㅎ
시대에서 이거 처음 배우고 충격받음
유익하네요
빨간점 a 노란점 b로 두고
4 + b = 2a
4 + 4b = a^2
무지성으로 근계관 쓰는방법도
나도 모르니까 그냥 이랬는데
두번째 식은 어떻게 나온 거애요??
4차 다항함수 식에서
3차항 계수는 근의 합(a+b+c+d)
2차항 계수는 두 근끼리의 곱의 합(ab+ac+ad+bc+bd+cd)
1차항 계수는 세 근끼리의 곱의 합(abc+abd+acd+bcd)
0차항(상수항) 계수는 근의 곱(abcd)과 관련이 있는데,
4차와 직선(1차)를 연립해봤자 2,3,4차항은 보존(불변)이므로 근의 합과 두 근끼리의 곱의 합이 유지됨을 나타낸 수식입니다
근데 저거 과정 수식 좀 알려주시면 안되나요?
능지가 딸려서 이해가 안돼요 ㅠ
인수나누기, 기울기함수 관련 칼럼 찾아보셔요
참고가능한 사진 하나 첨부해드릴게요
혹시 칼럼 어디서 가져오신건지 여쭤봐도 될까요,,? 가서 읽어보고싶어서요
헤헤
간격곱이 뭔가요
거리곱이라고 검색해보시면 나올거에요
https://orbi.kr/00062385201
이 칼럼 맨 마지막 부분에 설명되어있습니다 :)
와 신기하네요
저는 엄청 발상적으로 근의합 원리처럼
일차를 사차에 더해도 2차항은 그대로일 테니ab+ac+ad+bc+bd+cd가 일정하게 나오는 원리로겨우 눈풀햇어요
권경수가 알려줌 ㅋㅋ
앗… 이게 이렇게 유명해져 버리면…..!!!
기울기함수 느낌이네요 볼록접에서 극값을 갖는...
권경수의 몫합수 ㄷㄷㄷ
님 ㄹㅇ권경수인가..
이동준의 인수나누기...?
딱 이거다 ㅋㅋㅋ
권경수의 차원 찢기 ㄷㄷ
어려워요 ㅠㅠ