2023 수능 수학 손풀이 (공통, 확통, 미적)
2023 수능 수학 손풀이_울고있는치타.pdf
다들 스캔본은 별로라해서 패드를 샀습니다... 이거하려고...
5월 모의고사 갑자기 하면 글씨체 난리날 것 같아서 연습하려고 해봤어요!
패드에 글쓰는게 쉬운게 아니네요 ㅜㅜ 꿀팁 있으신가요
피드백 환영합니다! 저도 지금 다시 보는데 글씨가 많이 작은 것 같네요 ㅎㅎ;
공부에 도움되길 바라겠습니다!
5월 모의고사 손풀이 기다려주세영
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
26수능 응시하는데 아직도 탐구 못 정한 사람이 있다?! 13
그게 접니다 예예
-
근데 과외가 8
이렇게 구하기 쉬운건가여? 뭐지 뭔가 바로바로 필요할때 잡히는 느낌인데
-
점공 정리해보니 추합도 14명 도네 정병존 ㅋㅋ
-
너무 자존심이 상하는데 사실 그럼 걔네 놀때조차 그냥 훨씬 많이 공부하고 그래서...
-
G가 뭐예요? 얘는 어디서 튀어나온거야 ㅋㅋ
-
미확 만표차가 10점은 났을것.
-
과외하는데 1
ㄹㅇ 과외해보면 난 노베도 아니란걸 깨달을 수 있음......
-
이원준쌤 브레인 크래커가 많이 어렵나요? RNP 건너뛰고 브래인크래커 바로 가려고 하는데 괜찮겠죠
-
정훈구 화1 2026교재 사실분 개좋은 사은품도 드려요 5
2026판 개념의정답 개념본책, 워크북,워크북답지, 암기노트 구성입니다 본책만...
-
몇개 틀리시나요??
-
우웅하네 7
우웅
-
운동완뇨 2
-
로스쿨 하나만 보고 경영 가는거 너무 무모한가요?? 6
법조계에 크게 꿈이 있진 않지만 매우 흥미로운 직업으로 생각중입니다. 대학가도...
-
특정성격 혐오있는데 12
여기에도 많은 성격이라 함부러 말 못하겠다. 딱보면 바로 알 수있어서 피하기...
-
중대 창의ict 0
창의 ict 예비 700번대 극극초 받았는데 아무래도 힘들겟죠.. 중대 기계...
-
현우진은 음수일 순 없다하는데 지식인이나 다른곳 찾아보면 간혹 음수가 될 수 있다...
-
고3현역 킬러문제 푸는 스킬들만 듣고 싶은데 철두철미 안듣고 (개념은 탄탄하다고...
-
요즘 너무 생각이 많네요..지난날이 너무 후회됩니다 지금 이시간도 나중에...
-
하루가48시간임?
-
영어듣기 4
이제 고3이고 영어 듣기 꼭 2~3개씩 틀리는데 공부해야하죠? 해야한다면 문제집 추천해주세여
-
일요일에 누구 만나고와서 본교재 못(안) 풀고 강의들었는데 너무 빡세다 과제는 미리미리
-
형제간에 키,몸무게보다 소득의 상관성이 더 높대요 예를들어 형이 키가 크고...
-
롤 브론즈됐다 1
저주받은계정 골드보내기 시작
-
수능에도 딱히 도움 안되는것같네
-
integral k to 4 g(t)dt>=0 임을 시험장에서 발견할 수 있는...
-
옥씨부인전 많 관 부 대학관련 얘기 아닌걸로 제가 이리 신나는 모습을 못보셨을거임
-
하 수학킹들은 어릴때부터 이런과정들 겪은거겠지
-
대학생활 기대하지마라 1. 인문계 진학 일단 학점은 4.5에 수렴해야 하며 인턴,...
-
사주 봐주고 북치고 장구치고 하는 것도 '음악치료'로 건보공단에서 지원해주겠네요?
-
깔깔깔
-
다 남자였는데 이게 제주변만 남자의 비율이 높은건가요 아니면 수학 황들중에 남자의 비율이 높은걸까요
-
그것은 스타크래프트. 이거 진짜임 빠른 무한 존꿀잼임.. 가끔 독서실 째고 피방갈때...
-
찾을 수 있는 방법이 없나
-
내청코 후기 4
INTJ들의 연애는 어렵구나 대충 인물관계 좀 빨리 파악한 것 같은데 그것 때문인지...
-
그럼 일단 나부터
-
그건 바로 나약했던 어제의 '나' 나약했던 '나'는 오늘 죽었다 내일부터 새로운...
-
일단 여론조사를 조작한 건 아님 왜냐하면 이택수 리얼미터 대표이사는 친민주 여론조사...
-
젠장 에이스 2
난 너가 싫다!
-
진짜 고민되네요
-
한약대 나와서 페이를 뛸정도의 집안은 보통 한약대 진학을 고려하지 않음 ㅋㅋㅋ...
-
https://kicescience.cc/life/life2.html#enzyme...
-
나름 문과랍시고 시사에 관심 가지고 분석했었는데...
-
공부인증 1일차 9
-
저는 보통 1:30에 자서 8:00에 일어나는 편입니다 그런데 작년에 갔던 한의원에...
-
그냥 이유없이 개추좀 주쇼.
-
재수 준비하고 있는 문과생입니다. 지금 상황으로 봐선 현실적으로 올 2등급 턱걸이가...
-
찜한 분이 연락이 없네 상담중 아니신데
-
너넨 커터칼 줄게나는 일본도 쓸게
-
벌크업 ㄱㅂㅈㄱㅂㅈㄱ 올해는 무조건 팜하니 근육량38간다
태블릿 적응기라... 부족한게 많아요
날카로운 피드백 부탁드리옵니다...
도움되는 글 감사합니다
잘 보고 가요~ 이웃 신청합니다 ^^
흠 글씨 키워야할것같긴한데 다들 다운받아서 보지않나요..? 제가 태블릿으로 봐서 확대하면 커보이는건지 모르겠네요...
그건 그래염 여기서 보기엔 그러네염
도움되는 글 감사합니다
개추...
깔끔하시당
꺄 치타옵하 머시써요
오 미적 28번 저렇게 삼각형을 확장해볼 생각을 할 수도 있군요
전 현이 같다고 준 조건보고 저 확장이 먼저 떠올랐는데, 이 풀이는 뒤져봐도 찾기 힘들더군요 ㅎㅎ
현의 길이가 같다 -> 원주각이 같다 -> 원 위의 점 E를 떠올려 삼각형 CEQ를 떠올리자 -> ASA 합동
을 이용한 후 삼각형 EOD와 닮음임을 이용해 무한등비급수에서 닮음비로 넓이비 처리하듯 계산..! 어쩌면 이게 정말 출제자가 의도한 풀이일 수도 있겠네요!! 저는
'현이 주어짐 -> 원의 중심에서 현에 수직이등분선'과 '각을 많이 앎 -> sin법칙'으로 주어진 그림 내에서 해결하려던 생각이 첫 풀이였던 것 같네요
기트남어..
기트남어도 해죠오
기트남어...는 고민해보겠습니다
시간이 남으면 해볼게요..!!
14번 ㄷ 사고 과정은 어떻게 하셨어요?
전 현장에서 극한이 중첩되길래 뇌절 왔는데..
극한 중첩이라기보다는...
[-3,1]구간에서 증가하게되면 x=-3을 확인하고 최소를 갖는것을 확인할 수 있고
[-3,1]구간에서 감소하는 함수라면 1에서 최소를 가질텐데, x=1의 오른쪽 왼쪽 극한을 확인할 필요보다는,
*x=1에서 음수의 값을 갖지 않는 것만 확인해도 사실 최소가 없다는 것을 확인할 수 있습니다*
x=1에서 양수가 나오면 밑에 감소하는 함수에서는 x=1의 값이 존재하지 않으므로 최소가 없구나를 이것만으로도 확인할 수 있죠!
그래서 사실 그래프는 보여주기 위해서 그린거고, 극한 중첩도 필요없는 문제라고 할 수 있겠습니다...ㅎㅎ
아하...
이해되었습니다
너무 감사해요 ㅠㅠ
제 부족한 설명이 한번에 이해되셨다니 감사합니닷 ㅎㅎ