편미분이 뭘까?
직관적으로 생각해보면 '편 들어 미분하기'입니다. 그런데 사실 우리가 수능 수학을 공부하며 접하는 대부분의 상황에선 미분할 때 '편을 들' 일이 없습니다. 편미분에서 편을 든다는 것은 독립변수들 중에 어떤 한 독립변수의 편을 든다는 것인데, 우리가 수능 수학을 공부하며 접하는 함수들은 모두 독립변수가 1개인 (주로 x인) 1변수함수들이기 때문입니다.
이처럼 하나의 독립변수 x에 대해 하나의 종속 변수 y가 결정되는 대응 관계를 우리는 1변수함수라고 말합니다. 수학(하)에서 함수에 대해 공부할 때 x값 하나에 y값 하나가 대응되면 함수라고 배웠죠?
그런데 이런 것도 함수입니다. x_1, x_2값 하나씩에 y값 하나가 대응되는 2변수함수입니다. 주로 이런 식으로 표현하기도 합니다.
다시 말해 독립변수 x, y에 대해 종속변수 z가 결정되는 대응관계인 것이죠. 일반화하여 n변수함수를 다음과 같이 나타내어봅시다!
이것은 n개의 독립변수에 대해 1개의 종속변수가 결정되는 n변수함수를 의미합니다. 이렇게 1개의 독립변수가 아닌 여러개의 독립변수를 갖는 함수를 우리는 '다변수함수'라고 합니다. 여기서 '다'는 한자 '많을 다'를 떠올리시면 되겠습니다. 경제학도로서 대표적인 다변수함수가 뭐냐 물으면 '생산함수'를 답할 수 있겠습니다.
이는 4변수함수입니다. Y는 종속변수로 '생산량'을 의미하고 명목 GDP에서 물가 수준을 고려해 조정한 실질 GDP를 의미한다고 말할 수 있습니다. A는 기술 수준이며 F는 함수를 의미하고, 네 가지의 독립변수 L, K, H, N는 각각 노동, 물적 자본, 인적 자본, 자연 자원을 의미한다고 말할 수 있습니다. 자세한 것은 '멘큐의 경제학' 같은 경제학 관련 도서를 참고해보시고... 아무튼 이런 식으로 우리는 다변수함수에 대한 이해를 갖췄습니다.
우리가 평소에 접하던 1변수 함수에 대해서는 도함수의 정의를 통해 정리한 미분법에 근거하여 우리가 함수 f(x)의 도함수 f'(x)를 구할 수 있었습니다. 그런데 다변수함수로 넘어가면
독립변수가 2개이다보니 f'(x, y)와 같은 표현을 쓰기엔 적절하지 않지 않나 싶은 느낌이 오면 좋습니다. 그래서 우리가 앞으로
와 같이 각 독립변수에 대한 미분을 해줄 거예요. 그리고 이렇게 독립변수들 중 하나에 편을 들어서 미분하는 것을 '편미분'이라고 하겠습니다.
도함수의 정의를 떠올려볼 때 편도함수의 정의도 비슷하게 되어요.
임과 비슷하게
2변수함수는 이렇게
n변수함수의 i번째 독립변수에 관한 편도함수는 이런 방식으로 정의할 수 있는 것이죠!
예를 들어보면 다음과 같습니다.
이러한 2변수함수가 있을 때 두 독립변수 x, y에 대한 편도함수는 각각 다음과 같습니다.
즉, x에 대한 편도함수를 구할 때는 'y를 상수로 인식하고' x에 대해서만 미분하면 되고
y에 대한 편도함수를 구할 때는 'x를 상수로 인식하고' y에 대해서만 미분하면 되는 것이죠!
전자는 y가 상수니까 대충 y=3 정도로 두면 1/x를 미분해서 -1/x^2가 됨만 생각해주면 되고
후자는 x가 상수니까 e^x도 상수함수가 되어 미분하면 0이 될 것이고 y/x는 대충 y/3으로 생각해주면
1/3만 남아 일차함수 미분을 떠올려주면 되는 것이죠
그럼 1변수함수에서의 도함수는 접선의 기울기를 알려주었는데 다변수함수에서의 편도함수는 무엇을 알려주냐? 라고 할 때 대충 말하면 접평면의 방정식을 구할 때의 각 독립변수 축에 대한 기울기(?)를 알려줍니다. 이에 대한 것은 대학 미적분학 공부하시며 각자 더 깊이 알아보도록 하고..
언제 편도함수를 수능 수학에 적용할 수 있는가 하면 아래와 같은 문제를 풀 때입니다.
f가 미분가능한 함수이고 모든 실수 x, y에 대해 다음이 성립한다고 합시다.
우선 f(x+y)와 f(x), f(y)에 대해 x=y=0을 대입하면 A=A+A+B꼴이 되니 무언가 정보를 얻을 수 있겠죠?
정리해주면
f(0)=1을 얻습니다. 그리고 이제 양변을 x에 대해 편미분해보면
를 얻을 수 있겠고 양변을 y에 대해 편미분해보면
를 얻을 수 있겠죠. 그럼 x로 편미분한 식에 x=0을 대입하거나 y로 편미분한 식에 y=0을 대입하면
를 얻을 수 있어 이제 양변을 적분해주면
f가 2차함수임을 편하게 얻어낼 수 있겠습니다.
뭐 이런 문제 유형은 과거 수능에 출제 되었었고 요새는 내신에 나오거나 내신에도 잘 나오지 않는 것으로 알고 있어서 편미분이 직접적인 쓸모는 크게 없어보이기도 합니다. 그래도 알아두면 언젠가 쓸 날이 오지 않을까요! 뭐 정 없으면 재미로 알고 있는 것도 좋겠고요 ㅎㅎ
이외에도 '일단 이건 없다 생각하고'와 같은 논리는 수능 수학 문항들을 해결할 때 종종 쓰입니다. 그러니 내신 준비할 때처럼 '출제범위에 적합한' 것들만 공부하기보다 일단 걸리는 대로 공부해 두는 것이 스스로에게 유리하겠죠? 제 고등학교 때 영어 선생님께서 '공부할 때는 그물을 넓게 쳐라'라고 말씀해주신 것도 비슷한 맥락으로 받아들이고 있습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설대 추천해주세요
-
4칸까지만 유의미 서성한은 4칸도 위험하고
-
근데 피가 이어진.
-
가벼운투표 7
ㄱㄱ
-
성적인증 안한 상위표본이 갑자기 들어왔네
-
60점 초반대 점수 맞았던거같아요 4등급이 딱 제 실력인것같고 개념부터 잡으려하는데...
-
그냥 조용히 애도나 하세요 지 할일이나 하시고
-
비슷한 라인인데 한쪽은 좀 과열되어있고ㅡ표본 많이 들어옴 한곳은 한적하면 ㅡ표본...
-
썰로 풀어서 1월 2일 1화 업로드 예정 많관부
-
부탁이다...
-
왜 등수 확 당겨졌지..지금 5n등이면 발뻗잠 ㄱㄴ? 최초합 될까요
-
반수하면 복학할때 가장 낮은과가는걸로 아는데 그냥 학교 걸어놓고 군대가면 상관없겠죠??
-
[생1] 고퀄리티 유전 기출문제집&해설지 무료 배포 6
안녕하세요! 생명과학 1 과목을 가르치는 하드워커입니다. 오늘은 자체 제작 생1...
-
공부 개하기싫다 4
재수생 06인데 걍 술이나 먹으러갈까
-
늙은이여서 망설여지네 편입이 더 이득일까
-
개빡치네 시립대메디컬 ㅆㅃ..
-
수2 자작 0
수2 자작문제입니다. 예전에 만들었다가 지금은 기출에 많이 있는 소재라 쉽게 푸실...
-
재밌을려나
-
데미안
-
최초합 아니면 기숙사 못가서 큰일나는데 집에 돈이 없어서 보증금 낼 돈이 없음......
-
친구랑 헤어지면 또다른 친구를 만나면 되잖아? 완전럭키비키자나?
-
표본 숨기기야 아님 진짜 없는거야
-
술 한잔 했습니다 22
이제 2024년이 마무리되네요 다들 수고많으셨습니다 저도 내년에는 꼭 행복할테니...
-
인하대 신설 3
공학융합학부인데 신설이라 폭 걱정되는데 써도 괜찮겠죠?… 131명 모집입니다
-
잘 보이게 그래프도 같이 넣었어요
-
고민중
-
이제 고1이에요
-
진짜 그럴일 없겠지
-
유튜브 포함 각종 플랫폼에서 곡 삭제ㅠㅠ
-
연대폭 고대폭 ㄷㄷㄷㄷㄷㄷㄷㄷ 어차피 연고대 못 쓰면 개3추 ㅋㅋㅋ
-
라인 봐주실분 ㅜㅜ 둘다 5칸 뜨는데 조마조마해서요
-
맘에 안드니 프리패스인 경제학과를 쓸까
-
좀 다치셨다는데 제가 또 한 번 내려가볼까요 ㅠ
-
안에다가... 6
뿌슝빠슝삐슝
-
06 술 질문 14
다들 첫 술 어떻게 마셨나요? (혹은 어떻게 누구랑 어떤 술을 마실건가요) 소주?...
-
이정도면 인문 대학 어디까지 가능할까요? 과는 상관없어요!!
-
무시무시하네
-
코돈버리고 생2 47점이랑 물리2 만점이랑 난이도 비교하면 뭐가 더 어렵나요?
-
대학 붙고 미미미누 보는 기분이라 해야되나
-
9칸 추합? 1
이것 뭐에요~¿ 정상화 시급ㅠㅠ
-
[속보] 민주당 “최상목 탄핵할 수 있다…지금은 자제” 3
더불어민주당 이재명 대표가 31일 서울 여의도 국회 의장실에서 열린 여야 대표...
-
ㅇㅈ 7
-
피곤하다 0
10분 자야지
-
나이로 자르려나 다 붙이려나 선택과목도 같음
-
5칸 추합 0
지거국 5칸 상위권인데 ㄱㅊ을까요 가군에 9칸짜리 박는데 가기는 진짜 싫어요 여기...
-
과연...
-
폭날 확률 높나요?.. 6칸 추합 7칸 처ㅣ초합 나오는데..
-
가나군에 4칸 두개 박고 다 합격하기를…
혹시 편미분은 모든 변수 중 하나만 변수로 보고 나머지 변수는 그냥 상수 취급해서 미분하는거고
음함수 미분은 모든 변수를 변수로 인정해주고 미분하는게 맞나여
음함수로 정의된 함수는 2변수함수에서 바라볼 때, 우리가 z=f(x, y) 이런 식으로 함수 식을 정리할 수 있는 것이 아니라 F(x, y, z)=0 이런 방정식의 꼴로 주어진 식에서 x, y를 결정할 때 z도 하나의 값으로 결정되면 그것을 우리가 음함수로 정의된 함수라고 말합니다.
다시 말해 z=f(x, y)에서 (편미분 기호 round를 그냥 d로 표기할 때) 편도함수는 dz/dx와 dz/dy가 존재하는 것이고 F(x, y, z)=0에서도 편도함수는 dz/dx와 dz/dy가 존재하는 것이죠.
편미분은 n개의 독립변수와 1개의 종속변수에 대해 독립변수 중 하나에만 초점을 두고 나머지를 상수처리 한 상태에서 초점을 둔 독립변수에 대해서만 종속변수의 변화를 살펴보는 것이고
음함수 미분은 n개의 독립변수와 1개의 종속변수에 대해 편미분과 마찬가지로 접근하되 y=f(x1, x2, ..., xn) 이런 식으로 표현된 것이 아닌 F(x1, x2, ..., xn, y)=0 이런 방정식의 꼴로 주어진 식에서 적용하는 미분법이라고 이해하시면 되겠습니다.
다시 말해 편미분은 다변수함수에서의 도함수를 구하기 위해 우리가 배우는 개념이고, 음함수 미분법은 어떤 함수를 정의할 때 그것이 종속변수=(독립변수에 관한 식) 꼴로 정리할 수 없고 (독립변수와 종속변수에 관한 식)=0 꼴로 정리할 수 있을 때 주어진 방정식의 형태에서 바로 도함수를 구하기 위해 우리가 배우는 개념입니다.
그래서 정확히는 음함수(implicit function)로 정의된 함수에서 변수들을 바라볼 때 '어떤 변수가 독립변수가 되고 어떤 변수가 종속 변수가 되어 대응 관계를 이루는지'를 살펴볼 필요가 있습니다. 이와 관련해서 어떨 때 확실하게 음함수라고 말할 수 있는지를 알려주는 음함수 정리(implicit theorem)가 존재하는데 수능 수학에서는 어차피 1변수 함수만을 다루고 음함수 미분법을 적용하는 문항에서는 직관적으로 어떤 변수가 다른 독립 변수에 대한 종속 변수가 됨을 파악할 수 있게 상황을 주거나 'k를 g(t)라고 할 때'와 같은 발문으로 어떤 변수가 다른 독립 변수에 대한 종속 변수가 됨을 언급해주기 때문에
간단하게 '모든 변수를 변수로 인정해주고 미분한다'라고 말씀하셔도 괜찮을 것 같습니다. 참고로 미적분에서 학습하는 합성함수 미분법, 매개변수 미분법, 역함수 미분법, 음함수 미분법 등은 결국 연쇄 법칙(chain rule)이라는 이름 아래에 모두 본질적으로 같은 미분법을 의미하기 때문에 합성함수 미분법 문항을 음함수 미분법으로, 음함수 미분법 문항을 합성함수 미분법으로 접근해보시는 훈련을 하면 보다 본질적인 이해도를 높이는 데에 도움이 될 듯요!
이것이 수학...
본문에서 다변수함수의 예시로 든 생산함수도 L, K, H, N이라는 변수들에 k배 했을 때 종속변수인 Y도 k배가 되면 'constant returns to scale'이라는 표현을 경제학에서 쓰는데
다변수함수에서 독립변수들에 k배 했을 때 종속변수가 k^r배 되면 그 다변수함수를 'r차 동차함수'라고 부르더라구요! 이처럼 수능을 졸업하는 순간 수학엔 참 다양한 것들이 있음을.. 느낄 수 있는 것 같습니다. 저는 개인적으로 되게 재밌게 공부했어요 ㅎㅎ