칼럼10) 소소한 테크닉
나름 알려진 편이고, 은근히 유용하며 개념적으로도 의미가 있는 '소소한' 테크닉 하나를 소개해드릴까 합니다.
이미 알고계신 것도 있을 거고, 아마 처음보는 것도 있을거에요!
이는 e^x의 재밌는 특징에서 시작됩니다.
y=e^x는 도함수가 e^x이죠. 원함수와 도함수가 식이 같다는 겁니다. 즉, 원함수의 함숫값이 그 점에서의 미분계수인 셈이죠. x=a에서 함숫값은 e^a, 미분계수도 e^a일겁니다.
기울기가 e^a라는 것은, x축으로 1 이동할 때 y축으로 e^a만큼 이동한다는 뜻이죠. 그런데 마침 이 지수함수 위의 점(a,e^a)는 함숫값이 e^a네요.
여기서 다음 사실을 알아낼 수 있습니다.
e^x 위에 점 (a, e^a)에서의 접선은 x절편이 a-1이겠네요!
이걸 뒤집어서 말하면, (b,0)에서 y=e^x로 접선을 그으면 접점은 x좌표가 b+1인 곳에서 생긴다는 겁니다. 기울기는 e^(b+1)이 되는 것이구요.
y=e^x 뿐만 아니라 얘가 평행이동되었을 때도 마찬가지입니다. 그 함수의 점근선 위의 점에서 접선을 날렸을 때 접점은 x좌표가 1 큰 곳에서 생깁니다.
아래 문제에 적용해보겠습니다.
기출 문항입니다. 이미 다들 잘 알고 계실 것 같습니다.
최대인 순간은 바로 나오지 않아서 계산을 좀 해줘야 하지만, 최소인 순간은 분명하죠. 기울기인 양수 a가 최대인 순간과 y절편인 음수 b가 최소인 순간이 일치하는데, 다음과 같이 양쪽에 동시에 접할 때입니다.
(그림 출처: ebs)
일단 대칭에 의해 x절편이 3/2인 걸 캐치한 상황에서, 접한다는 정보를 이용해 a를 구해야 합니다. 이때 앞서 알려드린 소소한 테크닉을 이용해볼게요. 그림에서 표시된 t가 3/2보다 1만큼 큰 5/2겠죠. x=5/2일 때 f(x)의 함숫값은 루트 e입니다. 따라서 이 순간에 a는 루트e네요.
물론 s를 이용해서 구하셔도 됩니다. s의 경우에는 x좌표가 1/2이 되겠죠. g(1/2)= -루트e니까 기울기는 루트e여야겠지요. (g(x)는 아래로 그려진 상황이니까 -부호를 빼줘야 합니다.)
어찌됐건 직선을 이렇게 완성할 수 있겠습니다. 훨씬 간편하죠!
평행이동뿐만 아니라 확대축소됐을 때에도 이런 정보를 뽑아낼 수 있습니다.
이 함수의 경우에는 x축 위에 (a,0)에서 접선을 날렸을 때, 그보다 x좌표가 1/5만큼 큰
이 점에서 접점이 생기겠죠. 함수가 5배 축소되었으니 앞서 말씀드린 1차이난다는 경향성도 5배 축소하여 1/5이 되었다고 생각하시면 되겠습니다. 주의할 점이 있다면, 이때는 미분계수도 5배를 해줘야 하겠네요. 그래서 식을
다음과 같이 써낼 수 있습니다. 근데 이건 실수 가능성도 있어보이니(???: 아 ㅆ 5배 안했다) 이건 검토용으로 사용하시면 좋을 것 같습니다.
이 특징은 y= lnx 에서도 당연히 읽어낼 수 있겠죠. 대신 1 차이 난다는게 x축이 아니라 y축의 얘기로 바뀝니다.
e의 x승 놈을 뒤집은 거로 봐도 괜찮고, lnx의 도함수가 1/x이란 것에 착안하여 기울기 해석을 하셔도 됩니다. (기울기가 1/m라는 것은, x축으로 m 증가할 때 y축으로 1 증가한다는 뜻!)
한편, 다음과 같은 의문이 드실 수 있습니다. "왜 하필 e^x에서만?"
적절한 의문이죠. 사실 이 얘기는 모든 지수함수에 대해 가능합니다.
얘도 원함수와 도함수가 상수배 차이나는 꼴이므로 다음 정보를 이끌어낼 수 있습니다.
a=e일 때는 저 차이가 1이 되었던 거죠.
준비한 내용은 여기까지입니다. 원함수와 도함수가 관계되어있다는 지수함수의 성질을 이용한 재밌는 해석이었다고 생각합니다. 앞으로도 재밌는 칼럼과 자작문제 많이 보여드리겠습니다. 유익했다면 좋아요 부탁드리고, 팔로우 해두셔서 꼭 확인해보세요!
0 XDK (+1,000)
-
1,000
-
학교 학과까고 0
키배뜨면 안쫄리나 동기나 선배가 알아보면 어떡함
-
01년생 ㄷㄷㄷ 존잘+ 의대생
-
그래서 원래 걔가 올라오기로 했는데 걍 내가 가기로 함 성심당 가는김에 친구도 보고 일석이조
-
*재탕입니다. 어제 문항 공급 계약 미팅을 나갔는데 피오르는 요즘 영업을 안 하지...
-
달다!
-
입시판에서는 막 서강대가 성균관대보다 몇점이 높니 외대가 낫냐 중앙대가 낫냐 ㅈㄴ...
-
평소 역사랑 지리에 관심 있어서 세지랑 친구 추천으로 사문하려고 했는데 이번에 세지...
-
눈 무게 때문에 나무가 부러짐
-
난..루 1
저 외톨이..
-
근데 손주은 2
이번에 고등학생 대상으로 한 입시 설명회에서 저런 말 한 게 레전드임 ㅋㅋㅋ 여학생들도 많았다는데
-
애인 실험끝나면 데리러 갈 준비나 해야지
-
어떻게 인생최고업적이 애니 안 본거 ㅋㅋ 쟤같은 지능으로 태어났으면 진지하게 자살고려해볼듯
-
내년 의정부고 졸업사진에 이거 나올까 궁금하네
-
확 씨 아주
-
주입식 교육 3
너무 야한 것 같음 헤으응
-
뱃지없는 그나마괜찮은곳 찾느라 그염병을하셨군요! 그럼 인증도하셔야 ㅎ
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
면접에서 준비 못한 물벼룩 실험 질문 들어왔는데 순간 에피네프린이 작용하면 심장이...
-
나 이러다 집 못돌아가겠는데
-
데코니나 앨범발매 10
기념 마네킹 꺼내 듣기 캬캬캬
-
냉장고 7
-
(펑) 한시간동안 눈맞으면서 애니 얘기 하다가 가야함
-
저도 항상 써보고싶었어요
-
2021수능은 국어를 무슨과목을 쳤나요 22학년도부터는 독서문학은 공통 선택은 화작 언매라면
-
난 너희 지지해 사랑해 소멸할지언정 개방은안돼안돼
-
함께 있는 이 순간에 내 모든 걸 당신께 주고싶어 이런 가슴에 그댈 안아요
-
궁금 난 공학이 더 좋아...
-
ㅇㅇ
-
내 하루가 날아갔어 분명 26일이였는데
-
어떻게 해야 하나요 무언가 좋다고 하는 자료를 풀어도 인바디처럼 실력을 측정하는...
-
저게 문제의 온상이야 애들끼리 대면한번안시키고 상상력만 추가시키니까 애들이...
-
좀 멈춰봐
-
눈 개부음 ㅋㅋ
-
고1입니다 수행평가 할때 학자들 이론을 주제로 한게 많은데요... 사실 보면...
-
표준편차가 25~27정도네 지방이라 그런가..
-
원과목할거면 닥치고 생지일거고 아싸리 투투조합이 차라리 나을거같기도.. 표본이나 표점으로나..
-
청주는 눈 조금만 와서 다행인데 이거 인천출발로 했으면 큰일났을듯 인천은 죄다 지연먹는중
-
브크/훈도 시발점/뉴런 천일문/독수리 들어라 걍 수능은 얘네로 다뚫림
-
혹시 뱃지가없는대학인데 학벌드립을치는건 아니겠지~??
-
(펑) 지금도 연락중 ㅇㅇ
-
오늘 운 무엇 3
덕코 복권 3번 눌렀는데 3등 나옴
-
날씨 신기하네 0
윗집에선 눈오고 아랫집에선 비오고 여기는 햇빛 쨍쨍이고
-
밐 2
-
알바 출격 4
-
맞팔하실분 4
구합니다
-
소백산맥에 북서풍이 가로막혔기 때문입니다 상식GOAT 한국지리
-
이게 접니다…허허 이렇게 다시 글을 쓰게 될줄은 몰랐네요
오늘도 개ㅊ를 벅벅
오우쉣
ㄷㄷ
무슨 말인지 이해 못하는 문돌이들 개추 ㅋㅋㅋ
무민귀여워요
으악 미적이다
으악악
아니 ㅅㅂ 이게 뭐지.,?