[화학1 칼럼] 어짜피 비율 - 파급효과 미리보기
기출의 파급효과 교재에 새로 쓰이게 된 계산량 줄이기 관련 칼럼입니다. 이 부분이 화학식량과 몰 단원에 쓰인 칼럼이라는 사실을 인지하고 읽으시면 됩니다. 이러한 기술을 활용한 풀이를 더욱 연습하시고 싶다면, 기출의 파급효과 교재나 추후에 공개하게 될 ebs 선별 분석서에서 연습해보실 수 있습니다.
※ 어짜피 비율 - (임의의 실제값 대입)
이 단원에 해당하는 문제들의 경우 꽤나 계산량이 많다. 특히 제작년 수능인 2022학년도 수능부터 이러한 경향이 두드러졌다. 이러한 복잡한 계산을 하는데에 있어서 미지수가 많으면 많을수록 계산이 복잡해지기 마련이다. 그래서 문제 풀이의 진행과 계산에 있어서 이 많은 미지수들 대신 실제값을 사용하여 계산을 편리하게 하도록 하는 하나의 기술을 소개하고자 한다. 이 기술은 현재 서술하는 2단원에서 뿐만 아니라 4단원에서도 계산량을 줄이기 위해서 사용될 수 있기 때문에 이 기술을 잘만 활용한다면 시험장에서의 강력한 무기가 될 수 있을 것이다. 가장 먼저 이 기술을 사용할 수 있는 조건에 대해서 먼저 알아보겠다.
1) 문제에서 요구하는 값을 확인하자.
화학I은 비율의 과목이다. 문제 조건에서 빈번히 등장하는 상댓값과 분수 자료들이 이를 증명한다. 상댓값이나 분수 자료를 답에서 요구하는 경우, 미지수를 많이 잡더라도 결국에 마지막에 가서 답을 낼 때는 이 미지수들이 소거되기 마련이다. 우리는 이걸 역으로 이용해서 문제에서 요구하는 값이 상댓값이나 분수(비율)일 경우, 조건을 만족하는 미지수를 잡는 대신 이 조건을 만족하는 편리한 임의의 실제값을 넣어보자는 것이 기술의 취지이다. 그럼 예시를 들어가며 어떤 상황에서 이 기술을 사용할 수 있는지 알아보자.
이 선지의 경우 이전에 언급했던 2022학년도 대수능 18번 문항의 선지이다. 이 선지를 관찰해보면 선지 ㄱ,ㄴ,ㄷ 모두 문제에서 요구하는 값이 분수(비율)이라는 사실을 알 수 있다. 이러한 경우에 이 기술을 쓸 수 있다. 한가지 예시를 더 알아보자.
이 선지의 경우 위에 등장했던 2022학년도 대수능과 같은 해 9월에 18번으로 출제되었던 문항의 선지이다. 이 선지를 관찰해보면 (가),(나),(다)의 대응을 물어보는 ㄴ선지를 제외하고는 모두 요구하는 값이 분수(비율)이라는 사실을 알 수 있다. 이러한 경우에도 이 기술을 쓸 수 있다.
2) 조건을 만족하는 임의의 실제값을 대입하자
임의의 실제값을 대입한다는 말이 무엇인지에 대하여 간단한 예시를 들며 설명해보겠다. 문제를 풀이하다 보면 미지수를 도입한뒤 자료 해석을 통해 미지수간의 관계를 알게되는 방식으로 풀이 과정을 전개해 나가는 경우가 매우 많다. 얘를 들어 도입한 미지수가 x,y,z이고 문제 조건 해석을 통해 알게 된 미지수들간의 관계가 x=4y=2z라고 해보자. 이러한 경우에 임의의 실제값을 대입한다는 말은 x 대신에 4, y 대신에 1, z 대신에 2를 대입하여 문제 조건을 통해 구한 미지수들 간의 관계, 즉 비율을 만족하고 동시에 더욱 편리한 실제값을 대입함으로서 계산의 간결성을 챙긴다는 말이다. 추가적으로 문제를 풀어보며 이해를 돕도록 하겠다.
자작문항 예제)
풀이)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
24수능 제가 기억하기론 5틀 5등급 25수능 0틀인데 시간 20분잡아먹음......
-
재수할때 2
학교 걸어놓고 아예 처음부터 쭉 안가면 어케돼요?? 강제퇴학인가.. 학교는...
-
수능100점만 지원 가능? 화작97인데 강민철 박석준 둘 중 하나 넣을 것 같음
-
ㅈㄱㄴ
-
왜케 시작하기가 싫지
-
문과에도 영향있을까요?
-
한완수 미적 상하 해봤는데 도움 받기는했으나 솔직히 몰입이 잘 안 됨
-
블프인데 0
살게없네..근데도 뭐살지 고민하는것이 나란 인간
-
나지금이미지너무이상한듯뇨
-
내신을 ㅈㄴ 열심히 해도 5 뜸 이해를 한 것 같은데 시험만 보면 뭔지 모르겠어...
-
ㅈㄴ 별로네 좀 이쁘게 만들어주지
-
덕코주세요 11
네
-
언제쯤 개강하시는지 아시는 분 있으신가요 12월 한달안에 개념강의 듣고싶은데...
-
혹시 올해 강대 반수 최소컷 얼마인지 아시는분 계신가요?
-
긍정적분#9999 친추 ㄱㄱ
-
미련이 좀 사라짐... 그동안 그리워했던 나는 뭐였을까...염탐하길잘한듯
-
뻥임뇨
-
ㅈㄱㄴ
-
막상 확통이 어렵게 안나옴 24 25둘다 흠
-
짱쌔게 꼬집.. 2
-
낙찰받은지 1년은 지난거 같은데
-
제발 41점까지 품어주심 안되겠습니까?ㅠㅠ 표점증발로라도 ㅈㅂㅈㅂ 논술도 야무지게...
-
보안 문제로 아이폰 못 쓴다 이런 말도 있던데 병사한테도 해당되는 말인가요
-
세종대 정시 0
어느정도 선이 가나요.. 문과 젤 끝자락도 괜찮아요.. 성수 쪽에 살고싶다..
-
인생 망한 것 같다 11
재수생인데 수능 망침 어떻게 살아야 할질 모르겠음 하아아
-
블프 On 1
이번 달 월급 딱 대
-
오랜만에 들어갔는데 사이트 ㅇㅈ했네 아
-
방어 사주세요 8
회 먹고 싶어요
-
골반이 짱이지 4
ㄹㅇ
-
그게 나야 바 둠바 두비두밥~ ^^
-
수능 끝나서 싸게 올렸는데도 문의 수두룩하게옴 ㄹㅇ..
-
ㅅㅂ 일이 안 끝나... 자고싶어요...
-
곧 12월이네 1
시간금방간다 시대 수강신청이 엊그제같은데 ㅋㅋ 수능 성적표를 기다리고있네
-
문과 취직 0
경영학과는 취직이 열려있나요? 철학어문은 아예 불가능이고?
-
제목 죄송합니다.. 고2 영어 모고 4-5뜨는 노베인데 강사 추천해주시면 정말...
-
키도크고 몸매도 모든부위 완벽함(부위를 사람한테도 쓰는게 맞나?) 근데 얼굴은...
-
내일아침메뉴추천좀
-
최저떨인데 학교구경겸 ㅋㅋ
-
아깝다 2
흠.
-
타이밍 약간 놓쳤더니 7등이야
-
철학책 0
요즘 철학에 관심이 생겼는데 철학 입문하기 좋은 책 추천해 주실 수 있을까요?
-
아니 출석 1등 4
하기 진짜 힘드네
-
그래도 못생기긴 했지만.. 이마 덮으면 흉측함
-
집 도착하면 1시 되겠네 ㄹㅇ
-
집에서 1분거리에 있는데 귀찮아서 등록을 안함 ㅠ.ㅠ
-
내일이면 영원히(?) 입시공부와 이별...
-
샐러드만 먹으니깐 성격도나빠지는거같고 배는 또 배대로 고프고
-
사문 유기 선언 1
쌍지 가자 ㅋㅋ
-
작년에 입시할때 많이 고민했었음 요즘에는 어디를 더 선호하는지 궁금하제
감사합니다 선생님, 확률과 통계 성적 향상에 깊은 도움이 되었습니다.
ㅋㅋㅋㅎㅋㅎㅋㅎㅋㅎㅋㅎㅋㅎㅋ