통계질문 능력자 답변좀 부탁해요
신뢰구간의 길이를 구할때
모평균 m은 표본평균 +- 신뢰계수*루트엔분의 시그마 입니다.
문제1) N(100,5^2)을 따르는 모집단에서 크기가 50인 표본을 추출했을때
신뢰구간을 구하여라
문제2) 모집단에서 크기가 50인 표본을 추출하였을때 N(100,5^2)이 된다고 한다.
신뢰구간을 구하여라.
문제1과 문제2의 답은 똑같습니다.
하지만 제가 생각하기에 원래 공식에서 루트n분의 시그마가 나타내는것이
표본의 표준편차이므로 문제 2번을 구할때는 달라져야하는데 그렇지가 않네요.
개념원리 책에서는 표본의 크기가 충분히 크면 이를 모집단의 표준편차로 봐도 무방하다
적혀있긴 하지만 와닿지가 않습니다.
고수분이 설명해주실수있으면 좋겠네요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아무리 생각해도 미적 1컷 88 위는 아닌거 같은데... 1
미적 컷 88 위가 나온다면 이제부터 +1을 하는 행위는 의미가 없는듯... 85는...
-
진짜임뇨 어뜨캄뇨
-
나 가야된다 ㅠㅠ
-
9년지기 여사친-부대에서 한 시간 반 떨어진 자기 알바하는 곳 으로 커피 사들고...
-
이정도면 캠핑이긔
-
나이 처먹고 주작까지 하고 싶을까... 걍 한심하네 러지ㅋㅋ
-
뜬금없지만 ㅋㅋㅋㅋ.. 현강러들 자기만 꿀빨고 주변에는 안알리는게 괘씸해서!...
-
소신발언 0
비디디 귀여움 딱 개죽이 닮음
-
1학년 휴학이 안되는 학교를 갈 것 같은데 무휴학으로 수능준비하면서 공부하면 학점은...
-
답 맞나요?
-
24부터 혼란의시대
-
약대 선택과목 0
지구과학은 도저히 못하겠는데 물1생1 해야하나요 아니면 사탐으로 가야하나요 약대 목표입니다
-
옛날엔 수능치면 엄청 떠들어댔던거같은데
-
대학 문과 0
시립 영문 / 외대 ellt 일단 둘 다 1차 붙었고 최초합하고 나서 할 고민이기는...
-
아님 그냥 복학각임…?ㅠ 현재 지방한 메가기준 백분위 99 97 1 98 98
-
자기 인생 걸고 하는 시험에 뭣도 모르고 투투 고른다는 것도 의심이 가고 진짜...
-
쌩오수(나이상 사수)박고 정병 걸리고 솔직히 무휴반이나 군수 할거같음. 웬만하면...
-
최근 유럽의 생산성 둔화문제로인해 독일에서 주 4일제에대한 폐기안이 제시됐습니다...
-
출간예정일에 구매가능하도록 노력하겠습니다. (1) 24년 12월 말 출간 예정...
-
의대증원 이슈로 의대 누백이 떨어질 것 같긴 한데 하위권 정시 일반 누백이 어느정도까지 갈까요?
-
아니 무빙건 2
성대의대에서 한 번 더했다고??
-
갠차늠? 20대 초인데 1도 모름
-
지구처럼 줌?
-
의대 군수 고민 2
현재 지방 의대 다니고 있는데 상황이 뒤숭숭해서 내년초에 군대를 갈듯합니다. 군대를...
-
ㅇㄴ 그럼 어딜가야됨 ㅠ
-
가천대 논술 6모 9모 수능에 연계된 작품은 안나오나요? 그리고 수학을 보면 해설에...
-
국힘이랑 민주당이 같이 싸잡혀서 욕먹는거 보니까 신기하네.... 민주당도 여론에...
-
리자몽이 3개인데 리자드가 안뽑힌다 온라인이라고 확률조작하냐
-
다맞은사람 0 많이.. 어렵나?
-
고도의 컨닝스킬 합의되지 않은 집단 지성을 통해 성적을 완성한다
-
가지가지 나뭇가지
-
코돈버린 물투생투로 100 100 1 50 47쟁취
-
포만한 인기글 라떼는 조회수 1000넘었는데 2년만에 가니까 조회수 100이네...
-
12월말부터 하루4시간씩 공부 꼬박꼬박 열심히 할거임 이기상커리+개념 꼼꼼히+3일에 1번 실모
-
4수확정? 수능 포기? 이젠 나도 모르겠다
-
ㅋㅋ 시험 개망 2
할복
-
현장 공통1틀 미적이고, 미기확 세대라 확통 기하 28,29,30 다 풀어봤는데...
-
"....설탕은 진짜 모르겠는데요??" . . . . ".....그럴 '슈가'"
-
수학 4점도 좀 풀리던데 사탐 완성되어있는거 생각하면 미적할 시간 될려나요?
-
안되면 혹시 4칸은 나올까요?
-
연치 경희치 1
연치나 경희치 가능할까요?
-
저렇게 많이 넘어간 이상 어디가 됐든 한군데는 내려가는 곳이 있을거는 같습니다?
-
칼럼 쓰면 17
공부법 칼럼 국어 칼럼 수학 칼럼 물리학1,2 칼럼 지구과학2 칼럼 중에 어떤 걸...
-
논술 팁좀 0
기하 확통 완전 노베이스인데 문제집을 사서 공부해야할까요?
-
다들 의견좀
-
대학 이름만 높이고 싶어요
-
으흐흐 13
-
생1생2 지1지2 다 해본 입장에서 난이도 비교를 해드리자면 25수능 기준...
-
대우스와 톰님 바짓가랑이 잡지 말고.
네 n이 충분이 크면 표본표준편차 s가 모표준편차 시그마가 되요 고교과정내에서는 증명못해요.
뭔가 개념상의 오류가 나신것같은데
님 말을 잘 생각해보니까 님은
문제 1은 추출한 50개의 표본 내에서의 분포로 해석하신것같고
문제2는 표본평균들의 분포로 해석하신것같네요
그리고 표본평균의 분산은 표본개수가 많아질수록 모평균에 밀집한 분포를 보이므로 분산은 작아지겟죠 루트n분의 시그마가 그말임
n(표본개수)가 커질수록 분모가 커지니까 분산은 작아질수밖에없죠
표본의 크기가 클때 시그마를 s로 대체하는건 t분포랑 자유도에 관한 이야기인데 이건 교과과정 외이므로 그냥 저 말만 이해하시면 될듯
그리고 표본평균의 분산은 표본개수가 많아질수록 모평균에 밀집한 분포를 보이므로 분산은 작아지겟죠 루트n분의 시그마가 그말임
n(표본개수)가 커질수록 분모가 커지니까 분산은 작아질수밖에없죠
표본의 크기가 클때 시그마를 s로 대체하는건 t분포랑 자유도에 관한 이야기인데 이건 교과과정 외이므로 그냥 저 말만 이해하시면 될듯
그리고 표본평균의 분산은 표본개수가 많아질수록 모평균에 밀집한 분포를 보이므로 분산은 작아지겟죠 루트n분의 시그마가 그말임
n(표본개수)가 커질수록 분모가 커지니까 분산은 작아질수밖에없죠
표본의 크기가 클때 시그마를 s로 대체하는건 t분포랑 자유도에 관한 이야기인데 이건 교과과정 외이므로 그냥 저 말만 이해하시면 될듯
그리고 표본평균의 분산은 표본개수가 많아질수록 모평균에 밀집한 분포를 보이므로 분산은 작아지겟죠 루트n분의 시그마가 그말임
n(표본개수)가 커질수록 분모가 커지니까 분산은 작아질수밖에없죠
표본의 크기가 클때 시그마를 s로 대체하는건 t분포랑 자유도에 관한 이야기인데 이건 교과과정 외이므로 그냥 저 말만 이해하시면 될듯
네 답변에 감사합니다. 인디고잉님. t분포와 자유도에 대해 조금더 말씀해주실수 있으신가요?
아 죄송합니다 생각해 보니 t분포는 적합한 설명이 아닌것같네요
그니까 모표준편차는 편차의 제곱합을 n으로 나눠주고 표본표준편차는 편차의 제곱합을 n-1로 나눠주는데 n이 충분히 커지면 n과 n-1사이에 큰 차이가 나지 않기 때문에 대체가능한것같습니다
in3131님은 표본의 평균, 분산, 표준편차(표본평균, 표본분산, 표본표준편차)와
표본평균의 평균, 분산, 표준편차의 의미가 명확하게 정리되지 않은 것 같습니다.
예를 들어 어떤 고등학교 3학년(10개 학급) 학생들의 키를 조사한다고 합시다.
여기서 3학년 1반을 하나의 표본으로 삼으면 이 반 학생들 키의 평균, 분산, 표준편차가
표본평균, 표본분산, 표본표준편차입니다.
다음으로 3학년 1반의 표본평균이 bar X₁, 2반의 표본평균이 bar X₂, …, 10반의 표본평균이
bar X₁₀이라면 X₁, X₂, …, X₁₀에 대한 평균, 분산, 표준편차를 구할 수 있습니다.
이것이 표본평균의 평균, 분산, 표준편차죠.
또한 표본평균 X₁, X₂, …, X₁₀의 평균은 모평균(3학년 전체의 평균)과 같고,
분산은 모분산(3학년 전체의 분산)을 표본의 크기 n으로 나눈 것과 같습니다.
그리고 한 반에 속하는 학생들이 충분히 많다면
한 반의 표준편차와 3학년 전체의 표준편차는 비슷해집니다.
이것이 표본의 크기가 충분히 클 때, (표본표준편차)를 (모표준편차)로 봐도
무방하다는 말과 연결되는 것이죠.
<문제1의 경우>
모집단이 N(100, 5^2)을 따르고, 표본의 크기가 50이므로
표본평균의 분포는 N(100, 1/2)을 따릅니다.
신뢰구간의 sigma / √n 은 표본평균의 표준편차이므로
이 문제에서는 1 / √2이 됩니다.
그런데 문제에서 모평균이 이미 주어져 있기 때문에 신뢰구간을 구하는 의미가 없습니다.
구하려고 해도 추출된 표본에 대한 표본평균이 없구요...
<문제2의 경우>
표현이 애매한데 하나의 표본에 포함된 변량들이 N(100, 5^2)을 따른다고 생각합시다.
그러면 표본의 크기가 충분히 크므로 (모표준편차)=(표본표준편차)=5로 볼 수 있습니다.
따라서 모집단의 분포는 N(?, 5^2)을 따르고, 표본평균의 분포는 N(?, 1/2)을 따릅니다.
신뢰구간의 sigma / √n 은 표본평균의 표준편차이므로
이 문제에서도 1 / √2이 됩니다.