문항공모 광탈한 문제
개인적으로 좋은 자작문제라 생각합니다
답과 풀이를 적어서 보내주시면 2000덕코 드릴게요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오른쪽 눈 거진 몇 개월만에 쌍꺼풀 생겼는데 3일만에 다시 없어졌네... 이제 또...
-
ot 바이럴 goat임 ot 들으면 진짜 안듣고는 못견디게 만듬 근데 막상 들어가면...
-
님들은 여기서 뭐뭐가 정부 지원금/구조금이 필요하다 생각함? 1.아동학대 피해자...
-
원래 계획했던게 많이 틀어져서 지금 알아보고 있는중인데 동네에 있는 국어학원은 다...
-
설마 최종합격자 76명중에 14명이 점공을 안했었다는건가요..?? 중경외시라인인데...
-
부산가는길 2
떨린다ㅠㅠ
-
이 갬성 조름
-
너의 이름 뭐시기 시달소 많잔아 현실은 난 아저씨란거야..
-
우울하뇨 6
생활패턴이 이상해졋어 갓생 살아야 하는데
-
재밋나요
-
아 넘ㅁ졸리다 0
40분뒤 퇴근인ㄴ데진심졸림 ㅠ
-
나 심심한데
-
몬스터 마셔야겠다
-
ㅇ
-
얼버기 9
Hi
-
ㅇㅂㄱ 0
학원가는버스탐
-
다들안뇽
-
"진짜 다 의대 갔나봐"…KAIST 마저 '이럴 줄은' 초비상 4
의대 증원에 따라 공대 인재 궁핍 상황이 현실화할 조짐이다. 최고 과학 인재가...
-
예비고3 겨울방학 계획 국어(고2모 백94.1) - 강기본 문학, 고전시가 -...
-
소문도 빠르고 누가 누굴 좋아하는지 다 알고 있더라고요 누가 바람피는지 누가 cc인지 등등
-
이해할수업군
-
정말 멋잇는 문제 4 15
평면 위에 2n개의 점이 있는데, 어느 세 점도 한 직선 위에 있지는 않다. 이...
-
해뜰시간에 잠만처자
-
생패망함 5
안잔사람 나야나
-
기차지나간당 6
부지런행
-
문득 든 생각 1
의대생 살인사건으로 인해 면접이 갑자기 빡세지지 않을까…하는 생각이
-
얼버기 0
올만에 재밌는 메타가 열렸었네요
-
밤 새야지
-
f는 정의역과 공역이 모두 자연수인 일대일대응 함수이다. 다음을 만족하는 자연수들의...
-
오늘은 안자야겠다
-
본인 좀비 아포칼립스에서 죽을 때마다 환생하는 꿈 꿨음 3회차에서 또 뒤지고 4회차...
-
진한 메론맛은 아닌데 메론 향이 남 낱개 봉지 굴러다니던거 먹은거라 유통기한 확인할...
-
얼버기 6
-
파이어펀치는 너무 실험작이라는거만 빼면 ㄹㅇ 띵작임 재능의 원석 그자체
-
방금 방구낌 3
고요한 기숙사에 내 방구소리만 울려 퍼졋음
-
먹을게 없어서 굴러다니는 초코파이 (왜인지 메론맛이 남) 줏어먹고 굶주리는 중
-
에에에엥ㅇ 겨우 소멸은 면했네 이투스
-
오르비 눈팅하다가 비지원자도 3개 점공 볼 수 있다고 해서 상향 카드로 마지막까지...
-
쓰레기는 5
자러감
-
정실은 루비가 맞긴함 아이 카나 아카네 결국 사리나의 허상에 불과
-
오늘 할 것 0
수학 공부 세탁소에 옷 맡기기 맛잇는거 먹기 끗
-
오늘 첫끼가 오후 8시임..
-
꾸중글 2
꾸중
-
동생 박광일 듣게하려고 이투스 끊으려하는데 월간구독 이런거밖에 안보임...
-
사이노와 비
-
2^n+n=m!을 만족하는 양의 정수의 쌍 (n,m)을 모두 구하여라. (풀이도..)
-
추운날 마음이 따뜻해지네
-
저도 주세요 1
ㅇ 근데 이거 어따 씀
-
뭔데 1
나 왜 갤주님 팔로우 안되어있었지 한줄알았는데
-
작년에 미루고 미루다 결국 한문제 차인가?로 3떳는데 1받으려면 꾸준히 해야되나요...
풀이: 믿찍5
감사합니다.
잘 안나오네요 주어진 조건으로 어떻게 f(0)의 위치가 결정되는지 잘 모르겠습니다
답:4
풀이:
이래서 4번임
ㄱ틀려서 2같은데
1. g(0)=0이고 g'(x)=ㅣf'(x)ㅣ-f'(x)이므로 함수 f(x)의 ㅣ극댓값-극솟값ㅣ=p라 하고 f'(x)=3k(x-a)(x-b) (ab에서 상수함수이고 a=0) 꼴이면 아래서 언급할 함수 f(x)와 g(x)의 교점이 2개가 될 수 없음)
2. 함수 f(x)와 g(x)의 교점이 2개려면 f(x)가 극대인 점에 g(x)가 닿거나 극소인 점에 g(x)가 닿는 두 가지 상황이 나옴, f(0)=g(0)=0이므로 f(0)의 위치는 총 4가지 경우가 나오는 셈.
ㄱ. g'(0)=0은 f'(0)=0을 의미하는데 꼭 f'(0)=0이 아니어도 성립하는 경우가 존재하므로 ㄱ은 거짓
따라서 답은 2번
2. 에서 가능한 경우를 모두 따져보면
x=0에서 f(x)가 극댓값을 가진다
x=0에서 f(x)가 극솟값을 가진다
이라고 풀었습니다
왜냐하면 if 접하지 않는다고 가정하면 x=0 근방에서 2개의 교점을 가지고 필연적으로 1개의 교점을 더 가지게 되므로
따라서 f(x)는 x=0에서 무조건 접해야 합니다!
이런 경우는 왜 안되나요? g(x)가 작성된 식을 통해서는 g(x)의 개형을 결정하고 g(0)=0이라는 것만 알 수 있는데 함수 f(x)와 g(x)가 접할 때가 존재해야함은 확실하지만 그 접할 때의 x좌표가 0이라는 것까지 어떻게 확정할 수 있는지 잘 이해가 안됩니다.
아 그런 case가 가능할 수 있다는 것을 생각하지 못했습니다
죄송합니다.
저도 처음에는 무조건 극대 아님 극소에 x=0이 걸린다 생각하고 접근하다가 그렇지 않아도 가능한 상황이 떠올라서 ㅋㅋㅋㅋ 말씀드렸습니다, 문제 재밌게 풀었습니다!
4번 아님??
정답 4번 맞습니다 ㅏㅏㅏ
풀이 보내주신 허수께 2000덕 드릴게요