[공부법]변화할 수 있을까?
[공부법 영상 : 독재 공부법 ▼]
어떻게 하면 제가 변화할 수 있을까요?
수능 공부를 시작하는 고3이든,
재수를 결심한 재수생이든,
이전과 다른 모습으로 2023년 불태울 방법을 생각합니다.
하지만
우리는 엄청난 결심을 한다고 해서
내가 바뀔 수 있을지? 의문이 듭니다.
독학재수든, 재종학원이든, 고3이든
이제부터 변화해봅시다!
공부법 영상이 도움이 되었다면 좋아요 ♥
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
생각만 했던걸 실제로 듣게될 줄이야 ㅠㅠ 맨날 입무새인데 반성합니다
선생님 개념이 부족한건지 문풀량이 부족한건지는 어떻게 스스로 진단해볼수 있을까요
좋은 질문입니다!
수학을 잘하기 위해서 '연결 관계'가 중요하죠.
이 연결 관계가 수학적 논리에 출발입니다.
개념과 개념사이의 연결 관계
개념과 문제사이의 연결 관계
문제와 문제사이의 연결 관게
문제와 답사이의 연결 관계
수능 수학을 잘하기 위해서 총 4가지의 연결 관계가 튼튼할 때 잘 할 수 있어요.
이 중에 개념이 부족한 건
'개념과 개념사이의 연결 관계'
'개념과 문제사이의 연결 관계'
가 잘 안될 때 발생하는 현상이예요.
예를 들면, 문제를 풀 때 내가 배웠던 개념이 적용되지 않았을 때
개념에 빵꾸가 났다고 볼 수 있고
수 Ⅱ의 미분법 개념이 약해서 미적분 과목의 문제를 풀 때
곤란함을 느낄 때 개념이 약하다고 볼 수 있어요.
답지보고 만약, '아 맞다!' 를 한다면 10중 4-5 는 그 부분의 개념이 약해서 그런걸 거예요.
문풀량이 부족하면
문제와 문제사이의 연결관계 와
문제와 답사이의 연결관계 의
연결관계들이 약할 수 밖에 없어요.
A, B 문제가 사실 A 문제와 A문제의 확장 이었다고 가정해요. ( A'=B )
내가 기존에 풀었던 문제를 토대로 새로운 문제에 적용하는 것이 잘 안 될 때,
이를테면, 문제 푸는 스킬은 알겠는데 문제를 막상 못풀겠을 때 문풀량이 부족하다고 보여질 수 있어요.
혹은 문제와 답 사이의 논리적 추론을 하는 훈련이 덜 되어서
문제를 끝까지 풀어나가는 힘을 가지지 못했을 때도
문풀량이 부족하다고 여기면 돼요 : )
일단 제 책 <수학의 단권화> 수2 미분법 개념연구 테스트중 일부를 올려봤어요 : )
만약 아래 개념 연구에 답을 잘 못하겠다면
개념이 부족한 거 일 수도 있어요 : )
좋은 질문에 답변을 하다보니 거의 칼럼을 하나 썼군요!
도움이 되었다면 너무 좋겠어요! 새해 복 많이 받아요!
상세한 답변 정말 감사합니다 행복한 연말 보내세요!!