사관학교 문제하나 풀어보실래요?
게시글 주소: https://orbi.kr/00056869700

진짜 좋은 문제인데 강조하는 선생님들을 아직까진 뵌적이 없어서 아쉬웠네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
담배 끊을생각없어
-
오늘 하루도 너무너무 고생하셨어요 ( ˶ー̀֊ー́ )੭ 내일은 더 나은 하루가...
-
셀럽미 결과 5
흐음 딱히 안 닮았는데
-
맛은 있음
-
거울봣음..
-
너무 신경쓰고 그럴 필요 없음
-
문제 좋은데? 7
9가 1개: 0 9가 2개: 1 9가 3개: 2 9가 4개: 3 논증은 어차피...
-
아까 저녁에 먹은 트리플샷커피가 문제네 이거 ㅜㅡㅜ
-
아직 게시물은 없는디 오늘부터 성실히 올릴거임!
-
홍보하기 귀차녿.. 걍 폭파시킬까
-
반박 ㅇ
-
좌측 대각선과 우측 원호의 길이가 같으므로 이동거리와 평균속력이 모두 같다는 결론을...
-
그래 스펙 구경 좀 해볼까 어? 시발 눈에 보이 는건 온통 기만충 이럴순 없어 슬슬...
-
ㅠ
-
아니면 맞팔끊은건가
-
잔다 2
갓생을 위해
-
그래도 한 번쯤은 오마카세나 고급 일식집 이런 데 가 보고 싶음
-
일 하고 더 놀러 다니고 하는듯 젊음을 낭비하기 싫기도 하고 돈 쓰면서 노는걸...
-
오르비 안녕히주무세요 11
해뜨고 봐요
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 좋아요 구걸"좋아요 알림이 폭탄으로...
-
공벡해보쉴 19
난이도 상 둘중하나 풀면 2만덕
-
어딘가 결핍이 있는듯 그게 마냥 나쁘다는 뜻은 아니지만
-
2시간동안 풀면 800:1의 주인공은 당신
-
전문적인 건 아니고 재미로 3월초에 넣은 거 됐으면
-
난이도: 8/10 Y좌표로 유사기출 180921(가) 난이도:8.5/10 위의 사설...
-
근데 나한테 천덕 줘야함 선착순 천덕 주는 사람 1명 받음
-
학교에서 강제로 영화보러 가는데 재밌으면 보고 재미없으면 잘거임
-
옯뉴비다링 6
-
소아비만은 진짜 안됨 왜 안되냐고는 묻지마..
-
나는 아나운서 개그맨도 보이는거 보니까 ai기준에서도 하타치라고 인식한 듯ㅋㅋ
-
시발
-
제주도 특 4
공기"만" 좋음
-
셀럽미 ㅇㅈ 12
이제 슬슬 자야지
-
수능미적 25나 26번에 슬쩍 내면 미붕이들 머가리 터질까 아니면 잘 대처할까 뭔가...
-
어떻게 생각함
-
왜 안자요 0
-
잘거야 2
-
진짜 ㅈㄴ 이쁘네 짤 저장 ㅈㄴ 해야겠다
-
나는 서울살지만 4
서울 새끼는 아냐 밥도 굶어 봤지만 어두운 길로는 안다녀~
-
루비기여워 8
아이 out. 루비 in.
-
정신병이야 이거..
-
ㅈㄴ 아깝게 치킨 목이 개맛도리인데
-
6시 기상 목표 1
-
노래추천하나할게
풀어보실때 게시글 좋아요 눌러주시면 감사합니다ㅎㅎ
이거 찝찝함 남아있는데 현우진이 어쩔수 없는거라고 얘기 했었음
어디서 나오는지 알 수 있을까요?
지금은 못봄

저문제가 뉴런에 있었던걸 아는거면....아 ㅋㅋ
아
예아
ㄱㄱ
드가자~

f(1)만 구하는 거면 개날먹이었는데g(3) 때문에 어쩔 수 없이 다 그려야 하는군요
숫자들이 조건에 따라 딱딱 맞아 떨어지는 게 재밌네요
다 풀고 난 이후에 f, g의 일대일 함수, 일대일 대응에 대해 개념적으로 분석해보시면 진짜 좋아요!
일대일 대응 처음 배울 때 엄청나게 짜증났었죠
도대체 일대일 대응이 더 큰 범위인지 함수가 더 큰 건지..
조만간 관련내용 칼럼으로 업로드하겠습니다ㅎㅎ
합성함수가 일대일대응이니 f,g각각 일대일대응이므로 역함수꼴로 바꿔서풀수있다
이건가요

좋은 접근입니다2번!!
합성함수가 일대일 대응이어도 f g가 각각
일대일 대응이라는 보장은 없..지 않던가요
기출 중에 가운데 원소 개수 다른 게 있었던 것 같은데
뭐 이 문제의 경우에는 원소 수가 같아서
결론만 놓고 보면 맞는 말이긴 하지만..
당연히 원소개수같은거 고려한말이에용
위 문장의 '합성함수'는 집합명사가아니라 fgf를 지칭한 대명사
작년 수학하 내신대비때 본거같기도하고
기출인가요?? 어느 시절 문제인지 알려주실 수 있나요

17학년도 사관학교 나형 14번입니다!와.. 엄청 어려워 보이는데 당시 정답률 20퍼센트 였나여?
정답률은 모르겠는데 객관식 20프로면 많이 낮은 편이죠?
2022 수능 확통 28번 쯤 될것 같네여

2번
근데 좀 돌아가서 푼느낌이 있네요
조만간 칼럼으로 뵙겠습니다!되게 재미있는 문제내영... 풀면서 즐거움을 느낀 몇 안되는 문제인듯...

ㅇㅈㅇㅈ약간 생명 퍼즐처럼 딱딱 맞춰지네 ㄷㄷ
6
정답 2번인가요???

네네 정답입니다많이 어려운 문제였나요? fgf 그려보니 답이 나오긴 하네용

분석할게 많은 문제지요! ㅎㅎ칼럼 보고싶 ㅎㅅㅎ

잘 준비해보겠습니다???: 수(하)는 수능범위 아니라고 ㅇㅏ ㅋㅋㅋㅋㅋ
요런거 좋아하는 수험생은 수능에서 생명과학 선택하면 됩니다~
와 ㅋㅋ 진짜 좋은 문제네요 난이도도 어렵지 않고 퍼즐맞추기 식이라 맞추는 재미도 있고... 무엇보다 합성함수, 역함수, 함수의 조건, 일대일함수, 치역과 정의역 등등 수 하 함수부분에서 잘 알아놔야할 개념을 모두 건드려준거 같아요
시간 제한이 있을 경우에는 풀기 어려운 퍼즐맞추기
결국 구해야할 경우의 수는 f(1)이 3으로가냐 4로가냐 2개라서 3분안으로 풀 수 있는 문제 같은데 또 생각할 거리는 많아보이는 문제내용