사관학교 문제하나 풀어보실래요?
진짜 좋은 문제인데 강조하는 선생님들을 아직까진 뵌적이 없어서 아쉬웠네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1등급은 15
너굴맨이 처리했으니 안심하라구!
-
오르비언들의 말씀을 적절히 절충해봤습니다. 이렇게 하면 성공하겠죠? 기말 발표 때...
-
사랑합니다......
진짜 좋은 문제인데 강조하는 선생님들을 아직까진 뵌적이 없어서 아쉬웠네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
1등급은 15
너굴맨이 처리했으니 안심하라구!
오르비언들의 말씀을 적절히 절충해봤습니다. 이렇게 하면 성공하겠죠? 기말 발표 때...
사랑합니다......
풀어보실때 게시글 좋아요 눌러주시면 감사합니다ㅎㅎ
이거 찝찝함 남아있는데 현우진이 어쩔수 없는거라고 얘기 했었음
어디서 나오는지 알 수 있을까요?
지금은 못봄
아 ㅋㅋ
아
예아
ㄱㄱ
드가자~
g(3) 때문에 어쩔 수 없이 다 그려야 하는군요
숫자들이 조건에 따라 딱딱 맞아 떨어지는 게 재밌네요
다 풀고 난 이후에 f, g의 일대일 함수, 일대일 대응에 대해 개념적으로 분석해보시면 진짜 좋아요!
일대일 대응 처음 배울 때 엄청나게 짜증났었죠
도대체 일대일 대응이 더 큰 범위인지 함수가 더 큰 건지..
조만간 관련내용 칼럼으로 업로드하겠습니다ㅎㅎ
합성함수가 일대일대응이니 f,g각각 일대일대응이므로 역함수꼴로 바꿔서풀수있다
이건가요
2번!!
합성함수가 일대일 대응이어도 f g가 각각
일대일 대응이라는 보장은 없..지 않던가요
기출 중에 가운데 원소 개수 다른 게 있었던 것 같은데
뭐 이 문제의 경우에는 원소 수가 같아서
결론만 놓고 보면 맞는 말이긴 하지만..
당연히 원소개수같은거 고려한말이에용
위 문장의 '합성함수'는 집합명사가아니라 fgf를 지칭한 대명사
작년 수학하 내신대비때 본거같기도하고
기출인가요?? 어느 시절 문제인지 알려주실 수 있나요
와.. 엄청 어려워 보이는데 당시 정답률 20퍼센트 였나여?
정답률은 모르겠는데 객관식 20프로면 많이 낮은 편이죠?
2022 수능 확통 28번 쯤 될것 같네여
되게 재미있는 문제내영... 풀면서 즐거움을 느낀 몇 안되는 문제인듯...
약간 생명 퍼즐처럼 딱딱 맞춰지네 ㄷㄷ
6
정답 2번인가요???
많이 어려운 문제였나요? fgf 그려보니 답이 나오긴 하네용
칼럼 보고싶 ㅎㅅㅎ
???: 수(하)는 수능범위 아니라고 ㅇㅏ ㅋㅋㅋㅋㅋ
요런거 좋아하는 수험생은 수능에서 생명과학 선택하면 됩니다~
와 ㅋㅋ 진짜 좋은 문제네요 난이도도 어렵지 않고 퍼즐맞추기 식이라 맞추는 재미도 있고... 무엇보다 합성함수, 역함수, 함수의 조건, 일대일함수, 치역과 정의역 등등 수 하 함수부분에서 잘 알아놔야할 개념을 모두 건드려준거 같아요
시간 제한이 있을 경우에는 풀기 어려운 퍼즐맞추기
결국 구해야할 경우의 수는 f(1)이 3으로가냐 4로가냐 2개라서 3분안으로 풀 수 있는 문제 같은데 또 생각할 거리는 많아보이는 문제내용