칼럼)미분방정식을 이용해서 함수를 쉽게 구해보자.
맨날 여기서 공대오지마라 의치한가라같은 뻘글하고 떡밥글만
쓴 사람이지만 이번에는 그래도 지금까지 내가 썼던 글 중에서
어쩌면 가장 유용한 글을 써보고자 합니다.
우선 이 글을 쓰기 전에 미분방정식 관련 좋은 칼럼이 있어서
링크 첨부합니다.
지금 쓰는 칼럼같은 경우
내용이 매우 어려울 수 있으므로 깊은 이해보다는 이런게 있다라는 수단의
수준으로만 설명하고자 합니다. 또한 이 방법은 최후의 수단이며
고등 교과 수준으로 풀어내는 것이 가장 중요합니다.
아래와 같은 미분방정식이 있습니다. 이는 연세대학교 미래캠퍼스
2022년 논술문제에서 따왔습니다.
이것을 한번 풀어보죠.
이렇게 정리하고 양변 동시에 적분한다면
이라는 결과가 나오네요. 그리고 f(0)=1/2라는 경계조건이 있으므로 C=1/2이네요.
이 되네요.
근데 이거 갑자기 못떠오를 수도 있잖아요? 그럴때는 어떻게 풀어야 할까요?
그럴 경우에 도움이 되는 방법이 있습니다.
우선 이 방정식을 봅시다.
이 방정식 푸는 법은 다들 아실 겁니다. 저 링크를 타도 푸는 방법이 나옵니다만 알려드리자면
와 같이 정리될 것이고 여기서 양변을 적분해 줍시다. 적분상수에 유의합시다. 매우 중요합니다.
와 같이 정리가 되네요. e의 C제곱을 간단하게 A라고 나타냈습니다.
일단 주어진 방정식을 풀기 위한 첫 번째 과정이 끝났습니다.
그런데 이거 구해서 뭣에다가 써먹냐고요?
나중에 다시 설명해 드리겠으니 계속 따라와 주시면 되겠습니다.
이젠 아래 방정식을 다시 한 번 살펴봅시다.
여기서 f(x)가 삼각함수와 지수함수의 곱의 꼴로 이루어져 있어야
대입하고 정리해볼 때 우변처럼 나올 수 있다는 생각을 한번 해봅시다.
이것을 미정계수법이라고 하는데 사실 엄밀하다기 보다는 매우 직관적인 방법입니다.
위의 말을 간단하게 수식으로 표현해 보았습니다.
이제는 이 f(x)를 직접 대입해서 항등식을 세워 봅시다.
이런 항등식이 나오게 된다는 것을 직접 대입함으로써 확인할 수 있습니다.
여기서 이젠 a와 b의 값을 구하게 된다면 각각 1, 0이 나올 것입니다.
그러면 이젠 f(x)가 나오겠죠.
f(x)를 구했더니 저런 꼴이 나오네요. 저걸 다시 방정식에다가 대입해 봤을때 좌변과 우변이 서로
같아질 것입니다.
그렇다면 우리는 이 방정식을 풀었다고 할 수 있을까요?
답은 그렇지 않습니다. 왜냐하면 이렇게 구한 저 f(x)가 저 방정식의 유일한 해라고 단정할 수가 없기 때문입니다.
그러면 우리는 저 방정식의 해를 어떻게 표현해야 할까요?
맨 처음에 풀었던 방정식이 이에 대해서 놀라운 정답을 제공합니다.
이 방정식을 다시 한번 보시죠. 주어진 미분방정식에다가 대입해 봅시다. 그러면 좌변이 0이 될 것입니다.
그렇기에 Ae^x라는 항은 추가를 하더라도 방정식의 결과에 아무런 영향을 주지 않겠네요. 이러한 것을 우리는
'일반해' 라고 하기로 하였습니다.
그러면 f(x)를 이렇게 표현해도 방정식을 만족하겠네요.
이 f(x)가 위 방정식의 최종 해가 되는 것입니다.
그러면 이제는 상수 A를 구할 차례입니다. 이 문제에서는 f(0)=1/2라는 조건이 있었네요.
이를 대입 시 A=1/2가 될 것입니다.
하지만 이러한 방법에는 한계점이 존재합니다.
이렇게 f'(x)나 f(x)에 제곱같은 것이 붙어있을 때에는 쓸 수가 없고
처럼 상수계수가 붙어있는 경우에만 사용할 수 있다는 것입니다.
마지막으로 이 방법은 최후의 방법이기에 당연히 고교 수준으로 푸는 것이 가장 중요하다는 말을
끝으로 떠납니다.
맺는말) 공대오지마라 의치한가라
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
동덕여대 지지자를 대거 양성해버렸네
-
발등에 용암 떨어짐..
-
수익률이 너무 안좋다..
-
놀랍다
-
출처 ) 2025 지인선 N제 7회차 22번 (가)조건을 봤을 때 어떤 식으로...
-
애니프사단카르텔 0
-
국어 기출 주간지 실모 10
(1월부터 정석민쌤 현강 다님) 1월부터 간쓸개주간지, 이감모고 1~3월 검더텅...
-
흥미진진 0
(관전잼(
-
혼틈 질받 6
아무거나
-
수면 5
지금안자면 진짜내일감당힘들듯
-
정오만 보여주나요 아니면 답 뭐 햇는지도 보여주나여
-
어그로 ㅈㅅ 수학 도형이나 고1수학 제대로 다져놓지 않아서 수1수2푸는데 좀...
-
ㅇㅈ 4
는 저의 어릴적..
-
수학 조언 안 내놓으면 동덕여대 지지자로 간주한다. 38
나 06년생 (전) 현역. 자세한 스토리는 전 글에서 보고 오면 될 것이고, 이번...
-
ㅇㅈ 16
아와와와왕 어제꺼재탕
-
설대 가능한곳이 있을까요..(문이과 상관없습니다..) 13
설대식 내신반영점수는 잘 모르는데 2점대니까 BB라고 가정하면 인문 396.8 자연...
-
그 서울대 미만잡 아이돌분 영상이 계속 뜨는데 당연히 방송용 컨셉으로 재밌게 하는거...
-
뭔가뭔가.. 첫눈은 좀 아쉽게 오다 말아야 하는데
-
의대 내년에 휴학한다 치면 1년 날리는거같고 고민되네
-
이젠 그냥 의대가라로 바꼈노 ㅋㅋㅋㅋㅋ 유행어는 참 신기하구나
-
버킷리스트? 중 하나가 인플루언서 되기인데 그렇다고 내가 틱톡 챌린지를 찍을 생각은 없어서...
-
얼굴 컷 ㅠㅠ
-
나도 ㅇㅈ 3
-
저는 참음과 즐김의 균형점이라 생각함 이 균형점은 현재 시기마다 다르지만 계속...
-
메가기준 918 진학사기준 915정도 나옴 작년 70퍼컷 880~890이던데 빡셀려나
-
ㅇㅈ 3
아무짤올리기
-
디.시같이 유동으로 하면 몰라도 내 닉 달고 그런 말은 못하겠음.. 역시 오늘 또...
-
선넘질받 25
으아아아아앙 질문해줘
-
율전에 폭설 2
사람이 죽었어 !!
-
운동한 뒤로 하루하루가 순삭임뇨
-
연대 1등 ㅇㅈ 5
그건 모의지원 3명 있는 심리학과였구여~
-
아니 나도 ㅇㅈ 0
보고싶은데
-
보내줘
-
맥주 혼술 하는중이라 못봤네
-
집합으로 해서 정수점 개수세기를 시키는구나
-
가형 시절 틀딱인데 11
요즘 수능 난이도 어떤가요? 가형 100이었는데 요즘 수능 100 맞으려면 얼마나 공부하면 될까요
-
오늘은 진짜 없네 머지
-
ㅇㅈ 6
시작은 재탕으로
-
나 06년생 (전) 현역. 1년동안 국어 공부라고는.. 언매는, 언매 개념? 기출...
-
ㅇㅈ 1
(대충 안중에도 없다 짤)
-
누가 탈릅 했다 6
누구냐
-
공대 물리 2
물리 미리 공부하려고 하는데 수능 물리에서 어느정도 깊이?로 공부해야하나요
-
그것만큼 손쉽게 오르비 굴릴 만한 게 없음
-
밸런스겜 7
1. 모든 과목에서 처음 찍는 한문제 무조건 정답 2. 모든 과목 시간 +5분
-
수1 시발점 완강하고 수2 시발점 들어갈려고 했는데, 수1 시발점 하면서 조금...
-
2209 공통 56.98 미적 14.80 총점 71.78 2511 공통 57.75...
-
이때 오르비 안 하고 공부했으면 지금 좀 편하게 공부하겠지..? 라고 생각할 때...
-
고2 모고 321** 입니다 탐구는 생지하려고 합니다(저희 동네 지거국이...
-
메가스터디 환급 8
성적 다 작성하고 대학 입학했을 때 알아서 환급되는건가요 아니면 제가 따로 뭘 해야지 환급되나요?
아 뭐야 비켜 !
링크보시면됩니다.
엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요! 엄마! 난 커서 랩노가 될래요!
즐거운 함수방정식의 세계로 떠나요
요약)dy/dx를 분수 취급하면 정신건강에 이롭다
수포자라서 모르겟다..
의치한 가지마라 무조건 스카이 가라
이 글을 보고 미적분으로 선택했습니다.
이 글을 보고 확통을 선택했습니다
1/y 적분하면 ln|y| 아닌가요?
절댓값
그러네여 ㅎㅎ 죄송합니다
TMI)
고등과정에선 절댓값을 붙이지만....
복소해석학의 관점에서 계산을 하면 상관없습니다.
약간의 오일러 공식과 함께 계산을 곁들이면
고등과정에서의 case를 나눈 결과과 같아집니다.
대략) y=Ae^x에서 A가 양수뿐만 아닌 실수인 이유라고 생각하시면 됩니다.
ㅋㅋㅋㅋㅋ 잊고살았던 공수의 기억
공학수학의 향기가 느껴지는 글이네요
미방 에쁠받아서 좋았는데 이제 다른데 가면 날아갈성적 ㅅ;
대학입시에서 이런 스킬들은 잡스킬. 딱 그정도.