무료특강은 못참지 - 목요일 18:30 라이브
안녕하세요.
유튜버 아니 수학강사
상승효과 이승효입니다.
유튜버는 농담이긴 한데요. 하하
지난주 선택과목 무료특강을 유튜브 라이브로 했더니
무려 300분가까이 신청을 해주셔서
구독자 150명 늘어주시고~
채팅으로 소통하면서 저도 즐겁게 수업했답니다.
도움이 되었다면 댓글로 소리질러~~~!
지난주 영상은 곧 비공개 처리 되니까
아직 못본 친구들은 얼렁 보시고.
아쉽게 기회를 놓친 학생들로부터의 문의가 많아
특히 반응이 좋았던 미적이를 위해
무료 특강을 다시 하려고 합니다.
확통/기하러도 조만간 또 할테니까 잠시 대기!
일시 : 4월7일(목요일) 6시30분부터~
시청방법 :
유튜브 "이승효의 상승효과" 스트리밍
내용 : 지난주 무료 특강에 이어서
극한과 미분법도 다루고 새로운 주제도 할거에요.
1차 무료 특강 들었다면 이번에 더 탄탄해질거고
새로 듣는 학생도 따라올 수 있도록 설명할겁니다.
내용은 의견 수렴하면서 진행할 예정이고요.
댓글과 이번 라이브 시청자가 많으면
매주 지속적으로 할 생각도 있으니
무료 특강 계속 듣고 싶다면
이번주에 꼭 라이브로 접속해 주시길!!!
이참에 목요일은 스케쥴 빼고 상승효과 가즈아!
마침 새로운 영상이 올라갔으니 가볍게 시청해주세요~
유튜브 채널 구독과 알림설정까지 해주시면
특강 라이브 방송이 켜질때 공지가 간답니다.
그럼 조만간에 만나요!!
<이승효T 간단 소개>
서울대 컴공 졸업
도쿄예대 음악대학원 박사수료
현) 디오르비 출강
2021년 오르비 단과 매출 1위
전) 메가스터디 러셀 출강
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개억까다 진짜
-
이게 말이되냐
-
꿀과목 아닌것같음 ㅅㅂ 배운거에서 안나옴
-
이번수능기준 4등급, 듣기는 항상 다맞는데 18~20, 일치불일치, 43~45...
-
전문대갈건데 5
솔직히 나 예쁘고 돈도 많이 번다는데 하 …. 왜 이 학벌만… 수시 버리지말걸 ㅋ...
-
2일연속 밤새기 0
아침에 몇시간 쪽잠자긴 했는데 힘들다
-
세지친사람 있나 9
요번수능뭔가 이기상 저격같은데...
-
ㅈㄱㄴ 특히 국어
-
ㅈㄱㄴ
-
사람은왜코를골까
-
어문계열정도는 가고싶은데 가능할까요 정법 3 뜨면 아예 불가인가요..
-
숏치고 잔다 1
제발 공매도 성님들 한번만 도와주이소 나한테 뜯어간 돈가지고 공매도 치는거 아니오...
-
언매기하물2경제 18
언매기하물2경제 에반가요? 현역 화작기하물1물2했었고 화작4틀1등급놓침 -> 언매로...
-
지금 메가 대성 31 이투스 29
-
근데 만약 메가 혹은 대성 수학 컷이 맞았을 경우에는 1
왜 그렇게 나오나 생각을 잠깐 해봤는데 전년도와의 가장 큰 차이점은 의대 정원...
-
ㅋㅋㅋㅋ
-
알바 0
추천좀여
-
모두가 88을 외칠때 저는 조용히 84~85로 외치겠습니다. 사실 다른 분들이...
-
작수 가채점 끝난 저녁날, 받아든 가채점 결과는 언미영물지 13323. 목표에 한참...
-
인간 미쳐버리기 만드네 그냥..
-
뭔가 수위좀 있는거 같아서 군대에서 보기 좀 그럴듯
-
사람은 진짜 없는 느낌
-
지금부터 서로 죽여라?
-
뭐냐 에반게리온급이네 ㅅㅂ이
-
올해 150일 이상 4시간씩 탐구(생윤사문)에 박았는데 32떠서 좌절감을 맛보고...
-
창팝 밴드 커버 준비했는데 놀러와주시면 감사드리겠습니다 ㅋㅋㅋ 서울특별시 서대문구...
-
.
-
자이스토리 3
자이스토리 고3 수학 사려는데 수능 년도 바뀔 때 마다 문제 차이가 큰가요..?
-
왜 31만원이 21만원이 되었는지 설명해볼래
-
자니? 13
-
여성 인권운동가 아이민 1334714에 대해 araboza 4
우선 해당 아이민을 댓글을 기준으로 검색해보도록 하자 놀랍게도 여대,페미 관련...
-
경희대 논술 0
수리 논술인데 2-1에서 범위를 0<a<2/5까지라해서 틀리고 3-1에서 C값을...
-
수능은 끝났는데 3
왜 내 불면증은 안끝날까
-
내가 생각보다 잘하는거구나라는 생각이듦
-
잠을 못자 ㅅㅂ
-
강기원 김현우 장재원 박종민 안가람 이동준 ㅅㅂ 커뮤니티에서 후기들 알아보고있긴한데...
-
어그로 ㅈㅅ 87 74 2 93 93 동국대 철학괴 ㄱㄴ?
-
투과목잘알님들아 6
지2어떰?? 생2처럼 운이 크게작용함? 아님 정직하게실력만큼나옴?
-
얘네 지금 볼 필요 없음 그냥 놀아요
-
진학사? 2
다들 진학사 결제 하셨나요…? 아니면 다른 거 쓰시나용 요즘 걱정돼서 잠이 안 옴 ㅎ….
-
전날까지도 자꾸 실모에서 개념문제 하나씩 나가길래 수능날 실수하면 죽겠다는 마인드로...
-
오르비 땅따먹기 6
특정 검색어 도배 미코토 검색하면 내 글이 50퍼가 넘는다 흐흐흐
-
심심한데 0
뭐 질문해줘요
-
과탐과목 2
물원생투했는데 바꿀까요 그대로갈까요
-
걍 닉네임 안뜨면 안됨뇨? 왜케 거슬리지
-
서강대교 성수대교 한강대교
-
마렵네 :)
-
질병분류체계에 정신병으로 한국페미 집어넣어야한다 반사회적 인격장애와 경계선지능장애가...
-
똥줄타실것같음
선생님, 이번에도 동영상으로 부탁드려요 ㅠㅠ 감사합니다
라이브로 접속해주세요~
선생님 이번 동영상 내일까지는 들을 수 있겠죠?ㅜㅜ
네네~ 얼른 듣고 또 와요
선생님 안녕하세요! 다름이 아니라 중학도형(수1 삼각함수의 활용)을 공부할 때 정리/정의/증명을 주의 깊게 풀어야 하는 것은 알겠습니다.그런데 시험 해설강의를 보면 선생님들은 보조선을 너무 잘 그으시고 구해야하 하는 값을 향해 알고리즘 처럼 쭉쭉 가시는데 이런 실질적인 보조선과 중학도형의 실전적 공부는 어떻게 해야 할까요? 특히나 삼각함수 활용은 기출문제가 많이 없어서 제가 태도나 행동영역을 배워도 어떻게 체화하고 적용할 지 모르겟습니다!
선생님께서도 답변을 주시겠지만 제가 아는 선에서 답변 드리겠습니다.
일단 보조선을 긋는 이유가 뭘까요?
도형 풀이의 기본은 결국 내가 모르는 정보들을 아는 정보들로 표현하는 것인데(정의/정리/증명의 원리들을 이용하여) 그러려면 내가 모르는 정보를 아는 정보로 표현할 수 있는 보조선을 그어야겠지요.
예를 들어, 원과 접한 어떤 직선이 주어져 있다고 해보면, 원의 정의는 중심과 반지름으로 정의되기 때문에, 또한 접점에서 수직인 직선은 원의 중심을 지난다는 성질(정리)이 있기 때문에, 접점으로부터 원의 중심까지 이은 선이 등장할 수 있겠죠.
이등변삼각형의 경우 밑변의 수직이등분선이 꼭짓점을 지난다는 성질을 통해 꼭짓점에서 이등분선을 그으면 밑변이 수직이등분되는 것이구요.
실전적 공부라는 것도 결국 이런 식으로 생각하시면 될 것 같습니다. 결국 도형의 성질을 잘 알고 있으면 보조선이 그어질 포인트는 대략 보인다는 거죠.
기출 소스같은 경우는 조금만 생각을 확장하면 교사경, 고2 기출이나 EBS 문항들도 활용할 수 있을 것으로 보입니다. 그리고 오히려 기출 문제가 많이 없기 때문에 배워야 할 관점을 더 명료하게 볼 수 있을 것으로 보구요.
-지나가던 한 수학과 재학생이 올림
정성스러운 답변 감사합니다 정말 유익했어요!!
훌륭한 답변 감사합니다 :) 제가 덧붙일게 없네요~
오히려 기출 문제가 많이 없기 때문에 배워야 할 관점을 더 명료하게 볼 수 있을 것으로 보구요. -> 맞습니다.
허걱 이건 무조건이다
혜교님 어서와~
선생님 혹시 현강질문 관련해서 쪽지보냈는데 확인한번만 부탁드려용
답변드림~
샘의 에너제틱한 모습에 감동받았습니다. 감사합니다:)
에너지 끌어올려~~~!