네 안녕하세요 미분에 대해 보기위해 우선 문제부터 간단히 보면,
1번 문제는 x=y=0 집어넣으면 바로 f(0)=0이 나오고요, 따라서 주어진 극한을 변형하먄 '미분계수의 정의' 에 따라 0에서의 미분계수, 2번 문제를 풀 수 있습니다. 이때 저 "극한값이 존재하기에" f'(0)=1 인 겁니다.
3번째 문제는 사진과 같이, 항등식을 이용해 극한값을 변형할 수 있습니다. 그런데 앞에서 이미 f(h)/h 의 극한이 1임을 알아냈고, 따라서 극한이 "존재하기에" 도함수가 존재하는 것입니다. 그 전까지는 미분 가능한지 모르죠.
!
이게 수학?
이게 이렇게 푸는 문제엿다니..
이건 어디 문제인가요?
경북대 의대 2021 모의논술입니다.
내생각엔 이게 더 어려운듯
리만가설아님?
쉿
혹시 5번입니까..?
유튭 보다가 비자명한 실수부가 1/2 라고 했던거 같은데..ㅋㅋㅋ
그거 증명하시면 100만달러 ㄱㄴ
어디까지나 추측일뿐...
ㅋㅋㅋㅋㅋ 와 난리났네
편미분 때리면 안되나요
그렇게 안해봐서 잘 모르겠네요, 된다고 해도 현장에서 편미분 쓰면 감점일 것입니다.
넵 감사합니다
이렇게 풀면 안되나요?
미분 가능하다는 조건 없기 때문에 안됩니다
미분가능성이 보장되어있지 않은상황에서는 미분법은 사용하지 못하지만 미분계수정의는 사용할수 있는거 아닌가요?
미분법이 애초에 미분계수의 정의로부터 나온 것이기 땜에 안됩니다
사용하신 g'(0), f'(x) 등의 수/함수가 정의되는지 부터 논의해야 되는데, (g(h)-1)/h 의 극한값이 존재한다는 보장이 없으므로 정의가 되지 않습니다
넵 감사합니다
죄송하지만 아무리 고민해봐도 의문이 풀리지 않아서 다시 질문드립니다. 위와같은 문제에서는 f'(x)를 구할때나 f'(0)을 구할때 이 함수나 수가 존재하는지 증명하지 않고 푸는데 위 문제와 이 문제의 차이점은 무었인가요..?
네 안녕하세요 미분에 대해 보기위해 우선 문제부터 간단히 보면,
1번 문제는 x=y=0 집어넣으면 바로 f(0)=0이 나오고요, 따라서 주어진 극한을 변형하먄 '미분계수의 정의' 에 따라 0에서의 미분계수, 2번 문제를 풀 수 있습니다. 이때 저 "극한값이 존재하기에" f'(0)=1 인 겁니다.
3번째 문제는 사진과 같이, 항등식을 이용해 극한값을 변형할 수 있습니다. 그런데 앞에서 이미 f(h)/h 의 극한이 1임을 알아냈고, 따라서 극한이 "존재하기에" 도함수가 존재하는 것입니다. 그 전까지는 미분 가능한지 모르죠.
반면 제가 올린 문제는 같은 방법으로 극한값을 구하려는 시도를 했을때, 이 문제와 달리 극한값이 존재하는지 안하는지 모릅니다.