벡터공간+대학수학 질문입니다!!(급)
안녕하세요
계절학기로 Calculus2 듣고있는 대학생입니다.
다름이 아니라 벡터 공부를하다가 궁금해서 질문올립니다.
** 차원의 정의를 어떤 수식적 표현에 들어있는 독립변수의 갯수라고 알고있습니다.
1. 점은 0차원 선은 1차원 면은 2차원 .. 이렇게 통상적으로 말하는데 이게 맞는것인가요?
2. 예를들어 x^2+y^2=1 이 있다고하면 이것(원이라고 지칭하지않고 이것이라고 할게요) 은 x, y로 이루어진 공간속에 있으니까 2차원인가요? 아니면 제가알고 있는 정의에 따라 x가 독립변수라고하면 y는 정해지므로 종속변수, 즉 1차원 인가요?
3.1)f(x,y,z)=w 라는 식이 있을때 이것은 x y z 가 독립이므로 3차원이 맞나요?
3.2)f(x,y,z)=w 라는 식이 있을때 그래프상( x y z 축으로 이루어진공간)에서 그려지지 않는것이 아닌가요 ?
4. 위에 세 질문과는 별개로, Line Integral 을 배우고 있는데, 여기서 Interal (F dot T) ds 라고 곡선 c상에서의 선적분 이라고 정의되있는데, 찾아보니까 총 일의양의합이라고 합니다.
그러면 이식을 계산했을때 일말고 그래프적으로 넓이나 부피 이런 기하학적 의미는 없는건가요 ?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
당황스럽네 뭐지 진짜 둘다 1 못받은건 이번이 처음이라 그런가
-
오늘? 2시에 자는 사소한 이슈로 인해 기상이 쉽지 않았네요... 오늘도 파이팅!!
-
시대 겨울 단과 0
시대 단과 처음 갈 예정입니다. 미적 개념을 듣고 싶은데 어떤 선생님이 좋을까요?
-
근본적인? 행복은 존재에서 나오는게 아닐까 사람들이 우선 성취에서 기쁨을 느끼지만...
-
얼버기 2
ㅈㄱㄴ 오늘도 화이팅!
-
김민재 골이라니 2
ㅇㄱㅈㅉㅇㅇ?
-
zZ 2
-
기상 완료 드디어 오늘 예비군 마지막날
-
열심히 해보곤 있는데 원래 과탐에 stay 할 것 같네요,,, 십헬과목
-
인듯... 외모관리 중요한듯.
-
선결론) 물2 24.77, 47, 99, 69~70 화2 23.80, 44,...
-
궁금한게 2년뒤 대학에 입학하려면 최소 공군을 5월에 입대해야하는데 커트라인 보니깐...
-
77ㅓ억 간만에 대승이구나
-
얼버기 1
진짜 이른 기상이다 수도병원 가야해 피곤s
-
다 맞게써도 답안이 교수님 맘에 안들면 합격 못한다는거 진짠가여!?ㅠㅠ
-
안녕하세요 고3 정시생입니다 제가 고2 6모때 수학 높5맞고 고2 8월에 정시로...
-
밤샌다매. 12
님들아. 잠 안잘거라매.
-
ㄱ ㄱㄱㄱㄱㄱ
-
Ebs 기준으로 컷예측하고 ebs가 타사이트보다 백분위랑 표점이 널널해서다<< 라는...
-
아짜증남 0
대충 수능 망쳐서 딴 사람하고 비교되어 슬프다는 글썼는데 이런 글쓸시간에...
-
챔스보자
-
섹스
-
95 100 100 100을 성적표 오류라고 100 100 100 100으로 속임
-
기존 로고가 걍 눈알 심볼이니까 1. 눈알 심볼 그대로에 얇은 선으로 날렵하게...
-
전대 정시 0
54363인데 전대 하위과 정시 지원할만 한가요 언매 미적 생윤 사문입니다
-
전 260-280 사이
-
졸리다 2
바바
-
어렸을때 구몬한자 배우면서 사이비가 한자인걸 깨닫고 충격먹었음 이게 무슨 헹가래가...
-
수능끝나면 연락준다고 했는데 아직까지 연락 없는거보면 사이비한테도 걸러진듯...ㅠㅠ
-
예 예 예 예예예 예 예 예 예 예 예 예예예예~
-
가족 제외 전화 포함해서 전 5:5
-
얼버기 4
-
씹덕만 들어와줘 21
이전 프사랑 지금프사 머가 더 나아?
-
애매하게 고대 붙어서 반수하는 것보다 아예 3떨하고 절치부심으로 쌩4수해서 당당히...
-
누가 글좀 써봐 8
나 심심해
-
고뱃은 설캠으로 따려고 안받음 그래야 합격 실감이 나지 않겠음?
-
맨날 들어도 어른들이시거나 또래 남자애들 뿐이었음
-
맞팔하실분 ㄱㄱ 4
저는 항상 잡답태그를 답니다
-
덕코복권 무서운 진실 11
이렇게까지 1등이 안나온 적도 있다
-
MBTI 인증 0
NOW BEFORE INFJ에서 ENFP로 변화
-
너도 내 맘 안다면 ?
-
심심하다 2
배고프다
-
뭔가 전부 50:50 느낌임 중립적인 사람 ㄷㄷ
-
근데 기분 좋음
-
글 1
말 들어드림
-
인터넷 친구긴하지만 여기서 대화하는 분들중에서 친한분 3분이 인프피임
-
혼자 떠들고 있으면 관심을 한몸에 받고 있는 것 같아서 창피함
-
수능준비하면서 살이 너무쪄서 빼야하는데 계속 먹고싶어요 어떡하죠…
-
작년까진 못봤는데
-
설대 내신 0
평반고~ㅈ반고 내신은 몇점대까지 서울대 내신 BB받나요? 공대가고싶은 생각이...
아무도 답변을 안 달아서 달아봅니다. (사실 오르비에 글을 처음 써요*^^*)
1. 맞아요. 그런데, 차원에 대해서 좀더 깊이 있는 이해를 위해서는
다변수해석학이나 미분기하학 아니면 수학과 대학원 과정의 미분다양체론
미분위상 등을 공부하는 것이 좋다고 생각합니다. 그러면, 독립변수의 개수라는 의미를
좀더 엄밀히 아시게 될 것입니다. 아직 학부 1학년 수학인 Calculus2로 너무 많은 것을
얻으려 하지 마세용^^ 차차 학년이 올라가면서 수학과 학부, 대학원 과목을 공부하시면서
내공이 쌓이셔야함.-_- 단순히 벡터공간에서는 basis의 원소의 개수로 간단히 정의되기도
합니다. 벡터공간에서의 차원의 정의는 선형대수학에서 공부해요.
2. x^2 +y^2 = 1은 xy좌표평면에서는 1차원, xyz좌표공간에서는 높이가 무한대인 원기둥의 옆면으로
2차원입니다. 학부 1학년 수준에 맞추어 대충 얘기하면 n차원 공간 속에 들어 있는 d차원 도형을
방정식으로 표현하기 위해서는 n-d개의 방정식이 필요합니다. 고등학교 과정에서도 x+y=0이라는
하나의 등식은 xy좌표평면에서는 1차원인 직선이지만 xyz좌표공간에서는 2차원인 평면이 되지요.
또한, xyz좌표공간에서 직선을 표현하기 위해서는 (x-x_1)/a = (y-y_1)/b = (z-z_1)/c 와 같이
방정식 2개가 필요합니다.
3.1) xyzw좌표공간, 즉, 4차원 공간에서 그려져야 마땅하겠지요. (그러므로 실질적으로는 못 그리고,
상상만 해야겠지요.-_-^^)
4. 넓이나 부피의 개념은 각각 이중적분과 삼중적분과 관련이 있게 되구요. 위에 언급한
다변수해석학 등의 과목을 공부하게 되면 differential form들의 Wedge product를 이용하여
이중적분과 삼중적분을 더 엄밀하게 공부하게 되고, 그 때, 넓이와 부피 개념을 스스로
연결지어 생각하게 될 것입니다.
답변이 공부에 도움이 되었나 모르겠네요. 위에서 언급한 대로 학년이 올라갈 수록
더 재밌는 (그러나, 더 어려운-_-) 과목들이 많으니까 지치지 마시고 열심히 공부하세용.^^