수학문제 하나만 물어볼게요;(수능완성 실전편 5회 29번)
타원x^2+4y^2=4의 1사분면위에있는점 P에서 그은접선의 x절편,y절편을 각각 Q,R이라할때
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서울대 재학중이고 24수능 언미영생지 96 98 2 99 92 였는데 장학금은 어느정도 나올까요?
-
떡볶이집 알바 파스타집 알바 카페 알바 빵집 알바 하 고 싶 어 당장 보건소 가야디
-
팩폭 시원하구만 1
굿
-
바램1일차 1
무언가를 간절히 바라면 그게 이루어진대요 지구 37 2컷 1일차
-
유튜브는 이제 안녕;;
-
redline <<<<< 개 재밌어보임뇨
-
짧은 정보글 하나 씀 본인이 영어를 어느정도 한다는 가정 하에 보통 대학가면 웬만한...
-
네이버카페에 컨설팅이효고ㅓ가있는게맞냐? 이런식으로 쓴 글에 누가...
-
말이 되는 소리를 하셈뇨
-
23수능 화작미적 응시했습니다. 게딱지 하나 틀렸습니다. 1컷 96 24수능...
-
누가 이 방정식 내도됨? 얘기하던데 3차방정식 여러번 나온 시점에서 딱히 못낼이유는...
-
쌩사수였고 실기력은 괜찮았는데 운이 많이 안좋아서 미대 준비하다가 다 떨어져서...
-
만약 92 나오면 얼공하고 알몸도게자함뇨
-
스펙 평가좀 4
200 3 130 연세대 약대 재학중 연애 60번 오타니닮음
-
얼버기 4
-
ㄹㅇ 22번인가 30번빼고 어려운거 없지않았음? 진짜 소신발언하자면 말이죠..
-
연치가 목표였는데 ㅠㅠ 경북대치대는 될까요..?
-
오야스미 0
네루!
-
본능적으로 어떻게든 부정하고 싶어지는 그런 ㅈ같은 예감들이 본능을 뚫고 올라온다는건..
-
별거 아닌거 같았는데 내 상황부터 별로 안 좋아서 그런가 쉽지않음..
-
미적 만점 3천명은 너무 가신거 아님?
-
자기를 욕한다는둥 자기는 욕안먹는둥 하는건가요 누군지도 모르겠는 일개 수험생인지...
-
허허…
-
과탐에서 0
과탐 같은 과목에서 원점수차가 1,2점밖에 안나면 표점이 같을 수 있나요?
-
T1이 고의적으로 선수 지우기 하는거 진짜 비하인드에서 뭔 짓을 했다는건데.......
-
왜 자꾸 이 악물고 모른 척하는 거임
-
텔그랑 낙지 2
성적표 나오고 실채점으로 돌릴 때 사도 안 늦죠?
-
미적 1컷 88보다 이하여야함 이건 반박은 평가원 원점수 100 5번이상부터 받음
-
왜 쟤만 99냐 도대체 뭔근거로 핵펑크일거라고예상하는거지 재밌네
-
안심해도 되는거임?? 물론 가채점판이지만 그렇지만...ㅠㅠㅠ
-
1컷 47일지 45일지로 의견갈리다가 성적표 까보니까 만점자 5퍼뜬게 생각났음
-
다들 경험상 첫날 기억이 정확하신가요??? 진짜 잠을 못이루겠는데.. 대학이...
-
본인 미적만 해봐서 기하 공부해보고 싶은데 그렇다고 인강 보기는 쫌 그래서 한완수...
-
티켓팅같은거 해본적없는데 결제방법이 어떻게되나요? 컴퓨터로 하라고써있던데 폰처럼...
-
이게뭐노
-
x^2/(1+e^x) 를 -1 ~ 1까지 적분임
-
뻥임뇨
-
ㅂㅅ새끼들
-
국세단 / 광 생각증이에여 버틸 수 있을까요? 삼반수는 무리겠죠?
-
잉카제국의 수도 7
상식이다 상식아니다
-
2028수능이 마지막인지 헷갈랴요..
-
나는 상식이라고 생각하는데 기독교인 아니었으면 몰랐을거같기도하고 좀 애매하네
-
달달해서 이빨 써금뇨
-
ㅇㅈ하면 개1추 누르셈뇨
-
예비고1인데 22개정부터는 고등 수학에 행렬이 들어간다고 들었습니다 정보가 거의...
-
만표도 그만큼 떡락한단소리고 23수능보다 환산점수 컷이 내려간단 이야긴데 그렇겠지? 제발....
-
sky 걸어놓긴 할건데 학고 받을거라 사실상 재수임.. 목표는 인서울의대임. 현역때...
-
수험생들에 대한 예의를 따지기 이전에 분석글에서의 팩트는 팩트로 바라볼줄...
-
미적 6평하고 만점자 비슷하단말을했을까?
-
수능이라는 단어에 또 심장이 설레 미치겠다 나 수능치는거 진짜 좋아하는듯 말이...
산술기하 합이나 곱 일정할때 써야됨
그게 딱하나로 정해지지 않는경우도 있지 않나요; 산술기하 문제에서
변수가 존재하면 산술기하평균이 성립은 하지만 최대,최솟값은 구할 수 없어요
저 어쨋든간에 저둘이 같을때 최소가되는건 사실 아닌가요?
산술기하평균으로는 16/a^2+1/b^2≥8/ab 까지만 알 수 있고
ab가 일정하지 않기때문에 어떤 상수 이상이라는 것은 모른다는 말씀이시네요.
코시슈바르츠 부등식을 써보시면 어떨까요?
저 어쨋든간에 저둘이 같을때 최소가되는건 사실 아닌가요???
아니에요. 그건 마치 9≥8 이므로 9의 최솟값은 8이다 라고 말씀하시는 것과 유사하네요.
16/a^2+1/b^2 가 8/ab 를 최솟값으로 갖는다 ⇔ 6/a^2 = 1/b^2
이건 맞지만 종속적으로 변화하는 a, b에 의해 16/a^2+1/b^2가 8/ab를 최솟값으로 갖지 않을 수도 있습니다.
무슨뜻이죠;;; ㅜㅠ
여태까지 항상 합의꼴에서 둘다 양수라는 조건하에 최솟값을 곱으로 구해왔었는데; 이문제는 왜적용이 안되는건지 모르겠어요;
일단은 16/a^2 = 1/b^2 일때 최솟값인 8ab가 되는건 사실이잖아요; 근데 여기서 (a,b)가 타원위의점이란것에서 타원의식에 대입하면 a,b가 모두 구해지지 않나요?
그러니까음... a^2와b^2의 관계식이 정해져있으니까 사실상 a^2를 b^2로 나타낼수 있을테고 결국 b만의 단독식으로 유도 되서 8ab를 갖을수 있는거 아닌가요
음.. 그러니가 최솟값이 머든지간에 분명 어떤 a, b가 존재해서 ab/8 을 최솟값으로 가질 것이고, 그 때의 a, b는 16/a^2 = 1/b^2 를 만족한다.
라는 말씀이시잖아요?
그렇다면 아닙니다+_+....
ab가 일정하지 않기 때문에 최솟값이라는 ab/8 은 커지기도 작아지기도 하지요.
그런데 여기에 a^2+4b^2=4 라는 조건이 붙기때문에 ab/8 은 단 하나로 결정되고, 다른 a, b에서 그 결정된 값보다 작은 값이 나오기 때문에 안돼요.
실제로 산술기하평균에 의해 나온 값보다 더 작은 l^2 값이 존재하잖아요~
이번 평가원 6평 28번 문제에서 사용된 부등식의 논리와 동일한 논리입니다. 부등식으로 표현된다고 해서 해당 변수가 반드시 최솟값을 가지는것을 보장할수는 없습니다. 단지 크거나 같다는 사실만을 지칭할 뿐이죠
어떤 절대부등식 또는 일반 부등식에서도 한쪽이 상수가아니라면 그반대쪽의 최대최소를 이야기할수없음
무슨뜻이져 ㅠ 아...고1개념에빵꾸가있을줄이야
윗분들 말씀대로 이문제에선 산술기하는 성립하되 상수가 아니므로 그 등호성립일때가 최대최소가 아니라는거에요 왜냐면 그 상수가원래오는 식에 변수가왓으므로 그변수가지니는 또다른 최대최소가 잇을수 있고 그 럼 그 최대최소랑 등호성립일때 준식의 원하는값을 얻을수잇는거죠
저그렇게 따지면 8/ab 의 최솟값을 구하면 되는건가요?
8/ab가 변하긴 하지만 어쨋듯 8/ab가 a,b를 조합해서 만들수 있는 경우중 최소인것 아닌가요? 근데 8/ab가 되는경우 a,b의값은 하나로 정해지는데;;; 왜이런거죠;
그니깐여 에이가 상수보다 작거아깉으면 그상수가 최소죠 근데 식이라면 그 식의 범위가 다시 잇을테고 그럼 그 두부등식이 모두 등호가 성립해야 최소를 구할수 잇어요 더이상은 님몫
아니근데 위식이 8/ab가 되는 경우는 딱하나로 정해져있다니깐요;
그럼 그렇게 하세요..더이상의 대답은 시간낭비라는 생각이
모든상황에서 8/ab가 일정해야됨 님이 말하고 있는건 특정한 a와b에대해서 말하는거아님?
위에 수학상자님 말씀이 정확해요. 크거나 같다는걸 지칭만 할 뿐이지요. 반드시 등호가 성립하는 부분에서 최솟값을 갖는건 아닙니다. 그래서 최솟값을 구하는 문제에서는 8/ab가 일정해야만 하는거구요.
위 식에서 산술기하평균의 등호성립조건을 만족하는 (a,b)는 단하나뿐이겠지요. 1사분면에서 타원과 원점을 지나는 직선의 교점이니까요. 그걸가지고 '정해져있으니까 8/ab가 일정한거 아니냐'고 말씀하셔서는 곤란합니다. 그 점에서 최솟값을 갖지 않아요.
두뇌와 마음을 여시고 위의 댓글들을 여러번 읽어가며 생각해보시는게 좋을것 같습니다.