[JYJ칼럼] 7월30번 이른바 "연속정사영"에 대하여
[JYJ칼럼] 7월30번 이른바 연속정사영에 대하여.pdf
학생들의 질문을 받다보면
"꼭 필요한 기본적인 전제를 공유하지 않은 상태"로
"본인의 특수한 하나의 방법은 왜 틀렸는가" 에 대한 설명을 요구받을 때가 있습니다.
이른바 "연속정사영"은 그런 경우 중에 하나입니다.
혹 평소 궁금해 하던 부분이었다면 참고해 보세요^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
설대 내신 0
평반고~ㅈ반고 내신은 몇점대까지 서울대 내신 BB받나요? 공대가고싶은 생각이...
-
참가자 없어서 참가만 하면 10만원 가져갈 것 같은데 기술이 없어서 기초적인...
-
복권돌리지마제발내꺼야 16
제발
-
사실 칼복학하면 6개월 세이프라고 봐도 되긴 하는데 이거 지금 2주째 고민중임
-
우울해지는 밤 14
왜인지는 몰라도 잠이 오고 mbti정체성까지 알아버리니 착잡해지네요 누군가가...
-
지민정우주정복 2
해동까지 n(<24)시간 남음 ㄷㄷ
-
롤 너무 어렵다 13
해본 게임 중에 젤 어려운거 같아
-
군대 어디로 가야 16
호시노 같은 분대장 밑에서 구를 수 있음?
-
머먹을까 1.불닭 2.간장양념불고기 3.쌀국수밀키트 4.치즈떡볶이밀키트 5.던킨도넛...
-
안 친하면 F고 나 혼자 있으면 반반 이게 맞다.
-
점점 쌓여가면서 풍경 변하는 과정 보는게 ㄹㅇ 참맛인데 말이죠
-
다 자뇨 17
흠.
-
ㅇㅇ? 여긴 아직 비오는데
-
10일 너무긺 ㄹㅇ 기다리느라 목빠지는줄
-
할때마다 i만 고정이고 나머지 랜덤룰랫 수준으로 나옴
-
알바할땐 e였는데 지금은 i,n,f,p 다 80~90퍼임 친구들이 다 그림으로 그린...
-
진학사가 실채점 나오고 갈수록 칸수 내려가고 짜게 된다는 사람들 말이 있는 거...
-
오르비에서 "이새낀 올때마다 있네..."를 듣는 것입니다
-
나 T야?? 17
이 정도면 F로 쳐주시죠 졸려서 T된듯 ㅇㅇ
-
아직 안 나온 건가요? 언제쯤 나오나요?
-
이거 들으면 피가 끓어오르는 것 같음 ㄹㅇ
-
최저 잡아야하는데 공통 47에 미적 8이에요.. 등급컷은 4나오는데 이투스는 57로 잡아서 ..
-
제법 시끄러울지도
-
혹시 여기 커플있어요? 아님 끝내주는 연애경험이 있거나.. 23
차단해버리게
-
한 번도 안해봄
-
공룡중에 누가 젤 센지 말싸움 붙으면 나는 꼭 티라노가 아니라 타르보사우르스라고...
-
킹룡을 사랑하는 지과러로서 인터넷을 뒤지다가 대륙의 킹룡 영화를 발견함. 무려...
-
몸빼키 얼마가 적당할까 11
-
있다던데 이름 개웃김 ㅋㅋ 해남 우항리 지명 따서 해남이크누스 우항리엔시스인데...
-
살 찌우는 방법 있나 16
운동 하고는 있는데 수능 전까지 자주 굶었더니 180에 56까지 빠짐 지금......
-
사반수 0
어떻게 생각하세요 현역때 국어 영어 1고정 수학 98 96 92 백분위 와리가리...
-
뇌빼고 뻘글 뻘댓 벅벅 ㅋㅋ 도파민 폭발
-
재수 사탐런 3
이번 수능 친 06이고 재수 할 것 같은데 사탐런 괜찮나요? 목표는 연대...
-
그럼 인기 많겟지..
-
전대 토목과 0
전대 토목과 학종 3.84합격 가능성있을까요
-
기묘한밤 보다가 질려서 뭐볼까 하던 차에 그냥 어쩌다 한번 봤는데 재밌어서 계속봄...
-
연고 서성한 라인 싹 다 텔그가 진학사보다 6.7점 더 높은데 어디로 봐야됨???
-
음 자야하는데 6
끄응
-
진짜 모름
-
오뿌이들아 8
잘자
-
굿밤이에요
-
7->10 7
19->22
-
밤을 새고싶은데 12
늙은이라 힘이 딸림….
-
호시노가 되어야겠다
-
ㅈㄱㄴ
-
개발자 유튜브 채널 보면서 개발자를 꿈꾼적도 있었는데 마크 모드 서버 열라고 몇시간...
-
평가원 취향저격 미연시 ㄹㅇ ㅋㅋ
-
솔직히 정시로 서성한 이상 갔다는 것부터가 정시에서 어느정도의 깨달음을 얻으신 것...
-
2025년 12월에요
좋은 글이네요.
수학을 잘하는 학생과 못하는 학생의 차이를 결정짓는 것은 '이게 정말 타당한가'에 대해 얼마 만큼의 스탠스를 취할수 있느냐.
답을 내는데 만족하면 결코 안정적 1등급이 될 수 없음.
인강이나 주위 선생님 혹은 교재가 중요한 이유는 이 차이를 보완해준다는 점.
앞으로도 이런 글 많이 부탁드립니다.
ps. 출제해주신 모의고사 잘 풀었습니다.
이중정사영이라니... 듣도보도 못한 논리인데요,
저걸 사용하는 애들은 어디서 저걸 배운걸까요???
설마 그냥 직관적으로 쓴걸까요
직관이 엄청나거나 직관이 거의 없거나 둘중 하나일듯
직관이 ㅈ나 없습니다 지송합니다 ㅠㅠ
너무 마음쓰지 마세요.^^ 생각보다 많은 학생들이 실제로 그렇게 답을 찾아 보았구요. 그게 안되는 이유 또한 마땅히 해명되지 않았을 테니까요. 이번 기회에 이면각의 정의와 법선벡터를 이용한 방법에 조금 더 집중해주시면 됩니다. 화이팅!!
실제로 문제풀면서 이중정사영 쓰고 이게 왜 구하고자 하는 넓이랑 같은지 증명하고 있었어요ㅋㅋ 위에서 쓰신바와 같이 수직이니까 성립된다는 것도 시간 끝나기 전에 알아서 그냥 넘어갔는데 좀 고민해봐야겠습니다 감사합니다
직관이 ㅈㄴ없네요 죄송해요
배우고 갑니다
방향벡터로 풀었기에...
허 저런 방법이;;
저렇게 했다가 뭔가 아닌거 같아서 제대로 했었는데 답이 같길래 맞나?? 했는데 확실히 아니네요.
저번에 이걸로 푸는 방법제시해서 글올리신분이 제대로 설명안해주셔서 궁금했었는데..
감사합니다
장영진 선생님
작년 29번 해설 부탁드리면 안될까요??ㅜㅜ
선생님이시라면 정말 탁월하게 해설하실 것 같은데요
글을 통한 서술이 상당한 지면의 제약을 가져올테니 쪽지로 답변을 대신한 것으로 하겠습니다.^^ 화이팅~
저도쪽지로29번 답변좀받을수있을까요ㅠㅠ
아 29번해설 저도 한번 들어보고싶습니다,,,, 그 문제때문에 벡터쪽에 두려움이생겨서 그부분을 어떻게공부해야하나 하고 고민하고있어요ㅠㅠㅠ
코사안세타두개구한걸로 덧셈정리쓰는것도잘못된풀인가요?
1777129번 게시물이 그 내용인 듯 한데 이미 댓글들로 오류인 이유들이 대략 설명되어 있습니다.
결국 각들 사이의 덧셈,뺄셈으로 구해지려면 두 교선이 서로 평행해야만 하는데 7월 30번은 전혀 평행하지 않습니다. 그럼에도 정답과 같은 결과가 나온 것은 두 평면이 바닥과 이루는 각의 코사인값이 모두 1/root3 이기 때문에 생긴 진정한 우연입니다.
안녕하세요 선생님
저도 7평 30번을 풀었었는데 평면 MPQ와 ABCD가 이루는각을 A1
평면 DEG와 ABCD가 이루는각을 A2라고 했을때
cos세타 = cos(A1+A2) 라 두고 덧셈정리로 푸는건 오류가 있는 풀이인가요?
평면 MPQ와 ABCD의 교선, 평면 DEG와 ABCD의 교선이 평행할 때만 덧셈정리로 풀 수 있습니다. 이경우엔 두 교션이 서로 평행하지 않으므로 덧셈정리로 풀면 안되며, 위위의 댓글에 언급했듯이 정답과 같은 값이 나오는 것은 두 평면이 바닥과 이루는 각의 코사인값이 모두 1/root3 이기 때문에 생긴 우연입니다.
대박 이거이거
오우 ~~ 대박~!! ㅎ 저도 수업때 그대로 얘기해야겠네요 ^^ 감사함니다~ ㅎㅎ - soowoo
큭... soowoo쌤 여기까지 출연해 주시고.. ㅋㅋ
선생님, 그렇다면 이 문제에서는 연속정사영을 이용해도 만약 '평면이 수직일 때 성립한다는 사실을 미리 알고서' 사용했다면 논리적인 하자가 없는 것인가요?