심플한 도형 풀이 공개합니다
이전글에 올렸던 문제의 심플한 풀이.
먼저 사고과정은 아래와 같습니다.
1. 호 CD와 호DE의 길이가 같다
2. 색칠한 부분의 넓이가 삼각형 BDE와 같다
3. 삼각형 BDE는 삼각형 ABC와 닮음이다
4. 선분DE 또는 BD의 길이를 구해서 닮음비를 구한다
5. ABC의 넓이를 구해서 넓이비(닮음비 제곱)를 곱한다
깔끔하게 답을 구할 수 있습니다.
정답은 50분의 21루트3
그런데 말입니다. 진짜 문제는, 시험장에서,
각각의 과정을 어떻게 떠올릴 것인가
각 단계별로 사용되는
도형을 다루는 기본 원칙들을 알려드립니다.
1. 원 나오면 반지름
원 위의 특수한 점은 반드시 중심과 연결되어야 합니다.
'중심과의 거리'가 같다는 것이 원의 정의이기 때문이죠.
따라서 점 A, C, D, E 는 중심O(로 정의)와 연결되어야 합니다.
이때, C, D, E에 의해 만들어지는 반지름에 의하여
중심각이 만들어지는데, 둘다 60도가 됩니다.
따라서, 부채꼴 OCD와 ODE는 합동이고
호/현 CD와 DE의 길이가 각각 서로 같습니다.
여기서, 원주각 CAD와 DAE가 같으니 굳이 반지름 없이도
호가 같다는 것을 알수 있지 않는가?
라고 생각할 수 있겠죠. 그게 바로 보인다면 문제는 없지만,
원주각에 대한 모든 성질은 중심각이 있어야만 유도되는 것입니다.
따라서 원주각이 등장하면 중심각으로 연결하는 것이
더 우선되는 일관된 원칙이어야 합니다.
2. 복잡한 도형을 간단한 도형으로
활꼴 CD를 DE부분에 채워서 삼각형 BDE를 만드는 아이디어
평가원에서는 의미없이 복잡한 도형을 주지 않습니다.
단순히 계산을 복잡하게 하지는 않는다는 뜻이죠.
기출에서도, 복잡해 보이는 도형을
다른 도형으로 변환시켜서 간단하게 보이는 여러 예를
찾아 볼 수 있으니 연습해 두어야 합니다.
3. 삼각형의 기본은 닮음
중학수학에서 배우는 도형의 매우 많은 부분에서
삼각형의 닮음을 이용해서 증명을 하곤 합니다.
할선 정리를 이용할 수도 있지 않나?
라고 생각한다면 할선정리의 증명이
삼각형의 닮음에 의한 것임을 공부해야 합니다.
4. 길이는 수선의 발을 이용
선분DE 또는 BD의 길이를 구하기 위해서는
먼저 선분 BC의 길이를 구해야 합니다.
이때, 코사인 법칙을 사용할 수도 있지만
C에서 AB에 수선의 발H를 내리면 됩니다.
각 A가 특수각 60도임을 이용하고
피타고라스 정리를 한번 더 쓰면
BC이 길이를 구할 수 있습니다.
이런 과정은 코사인 법칙의 증명입니다.
5. 넓이는 가장 쉬운 방법으로
위에서 수선의 발을 내리고 수선의 길이를 구했다면
넓이를 구할 준비는 이미 모두 끝난것이겠죠.
계산만 하면 됩니다.
사인함수를 이용한 넓이 공식은 결국 높이,
이 문제에서는 수선 CH를 구하기 위함이므로
특수각을 이용해서 구하는 것으로 충분합니다.
어떤가요?
중학수학에서 배우는 내용만으로 이 문제는 해결됩니다.
이 도형은 작년에 가형에서
무한등비급수와 프랙탈 문제로 출제되었고
오답률이 매우 높았던 어려운 문제였습니다.
단계별로 발상을 떠올리기가 어렵다는
학생들의 의견이 많았죠.
도형에서의 발상,
반드시 공식의 증명과정에서 나옵니다.
교과서에 기반하고 있지 않은
의미없이 복잡한 도형은 절대로
평가원에서 출제할 수 없습니다.
코사인법칙, 사인법칙, 삼각형 넓이, 할선정리 등등
증명할 수 있다면 그 과정을 꼭 외워두세요.
그리고 그 과정에서의
매우 기본적인 행동패턴들,
수선의 발 내리기, 반지름 그리기 등을
정리해 두면 발상때문에 고민할 필요가 없습니다.
도형을 마주치면 해야할 행동을 해라.
그러면 자연스럽게 해설지에 있는 그림이 완성될 것이다.
이것이 도형 문제에 대한
수학강사 이승효의 철학입니다.
이번 Live100 시즌1 <6평, 100분이면 충분해>
를 통해 제가 깔끔하게 정리해 드리려고 합니다.
이번 한번으로 도형문제는 끝날거라고
자신있게 말씀드리겠습니다.
6평대비 100분 특강
<도형을 심플하게 만드는 꿀팁!!>
수업 일시 : 5월 29일(토) 오후3시~4시40분
수강료 : 20,000원 (교재비 추가 없음)
현강 장소 : 강남(서초)오르비학원 (강남역)
- 주소 : 서울특별시 서초구 서초대로 74길 33 비트빌딩 2층
- 연락처 : 02-522-0207
- 지도 : https://academy.orbi.kr/gangnam/ipsi_result/directions
비대면 수강(실시간 스트리밍)도 가능합니다.
결제 완료 되면, 수업일 전에 수강 방법 안내 문자 발송 됩니다.
수강신청 바로가기
https://special-oa.orbi.kr/booking/gangnam/payment?showonly=349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365
* PC버전에서 수강신청하는게 좋다고 하네요.
결제에 어려움이 있다면 학원으로 전화주세요.
Live100 결제관련 공지 참조 https://orbi.kr/00037693486
이승효 강사 소개
메가스터디 러셀, 메가스터디 재수종합반 출강했고
현재 오르비학원 강남 / 대치에서 수업중인 수능수학 전문 강사입니다.
질문은 댓글로 받습니다. 좋아요와 팔로우도 감사드릴게요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
적백받고 그 밑으로 가는사람이 과연 존재할까 내가 보기에 중경외시도 거의 없을듯
-
글 다밀었다 0
이새끼 ㅅㅂ 하루에 똥글을 몇개를 싸는거야 한시간정도 걸린듯
-
나보다 먼저 공부 시작하고 더 잘햇던애 재끼고 착잡한 표정으로 날 볼때임뇨 으흐흐흐흐
-
레벨3까지 풀어야할까요?
-
올해 수능은 4
잘낸거임? 국영수 탐
-
과제 끝나니까 6
관성적으로 실모찾고있네 ㅅㅋㅋㅋㅋ 아 끝낫지
-
예쁜 책과 스터디 플래너 그리고 내가 뭔가를 도전한다는 그런 마음가짐같은 것들이...
-
으흐흐..
-
중대 수학 반영비 너무 높다…
-
ㅇㅇㅋㅋㅋㅋ
-
궁금해짐
-
왜다들 0
사탐 컷 오른다고 겁주는거에요 왜 ㅠㅡㅠㅡㅠㅡㅠ
-
D-360 공부 0
-
야식 먹고싶다 4
참을까
-
대신27을틀림..
-
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
이거 어디 됨요 0
-
정답을 왜 저렇게 내는데….
-
예전에 과외할때 스스로 설명 잘하는 편이라고 생각햇는데 기똥차게 설명하고 약간...
-
수학 오랜만에 다시 시작하는 사람입니다.. 시발점 다항식이랑 인수분해 챕터...
-
물1 화1기준 한 전기장 오비탈(준킬러) 정도 난이도인가요? 최대한 어렵게 냈다는 과정하에..
-
공통 한완기 오답해야하는데 확통을 자꾸 미루게 돼서요.. 일주일안에 개념원리,...
-
ㅇㄱㄱㄷ
-
밑부분만보고 5번이틀린줄
-
하... 너무멋있어
-
어질어질 6
고작 21번인데 이거어케품뇨
-
무슨 과목을 추천하시나요? 일단 생명은 할겁니다! 물리 9월에 시작했다가 올해...
-
본인 풀커리픽 4
국어 이승모 수학 김현우 영어 조정호 한지 이기상 사문 임정환 근데 걍 올해 커리픽인데 아 ㅋㅋㅋ
-
이미지 김기현 0
이번 수능 한 3개월 정도 기출이랑 고등 상하부터 개념 때워서 이번에 5받았는데...
-
화작러라 잘 모르는데 무슨일님 뉴스보니까 이의신청 저게 제일 많다는디
-
추어서 못감뇨
-
한시간 반동안 한건데... 버렸나 하 진짜 ㅠ
-
무단결석 하지 마라 11
너 그거 하면 공군 못 간다
-
국어 김상훈T 수학 김범준T 영어 조정식T 화학l 김준T 생명과학l 김태영T
-
선생님들 이정도면 실채점 나와도 연고대 문과는 갈 수 있겠죠? 13
제발요.... 이미 친구들한테 자랑해놨단말이에요........
-
D-38 2
오징어
-
CJ, 첫 90년생 CEO 나왔다…오너가 제치고 임원 9개월만 '초고속' 승진 2
CJ가 18일 정기 임원인사에서 CGV 자회사 CJ 4DPLEX(4D플렉스) 최고...
-
26수능을 무조건 보긴 할건데 그래도 이성적으로 어딜 갈수 있을까요? 국어 지구.....
-
뭔 핵펑크 예상이라는 듣도보도 못한 시스템으로 예측을 해주는데 아니 일단 펑크를...
-
지금 낙지 작년 불수능 표점 기준이라 좀 박한건가? 0
물론 초반이긴한데 왤케 낮게나오지
-
정시파이터 고2이고 모의고사는 평균 3등급입니다 질문이 있는데 1.개념+유형서 끝낸...
-
과탐 화학 3
가고 싶은과가 화생공 아니면 화공과 인데 화학 도저히 못할거 같아서 사탐 생명...
-
공대일반과 입결보다 빡센가요? 정시 인원 너무 적어서 자전으로 늘까 하는데
-
포장할건데 스낵랩까지 살까?
-
졸업 할 때 쯤 되니 이 짤이 진짜임을 깨닫게 된다 2
조별과제로 챗gpt같은 LLM 만들어야하는데 삼수하는 여친 심심하지 말라고...
-
자꾸 들어오고 싶은 걸요번 주는 할 게 없네논술 안 가는 사람들은 뭐하고 계신가요
-
[러셀대치] 국어 강민철T 수업 안내 [Web발신] [러셀대치] 국어 강민철T 수업...
-
그거 맞췄다 생각하고 라인 잡는중인데 맞나요?
npc 하이
사문의 마법사다
문제풀이과정까지 정말 감사합니다. 유독 취약한 문제유형중 하나가 함수와 도형부분입니다. 이런 도형문제 접하면 기본이 20분정도 뚫어져라 보다가 겨우풀이 시작하는 수준에서 시작하게 되는 제 자신..(..)
몇가지 원칙만 확실히 잡아두면 도형문제는 기계적인 반응으로 풀어낼 수 있어요~ 도형 잡는것이 함수보다 훨씬 쉽습니다.
저같이 수학에 매우 취약한 사람도 수강신청해도 이해할 수 있을지요..?(...)
[[특강]아름다운 시작 (이벤트 마감)] https://orbi.kr/00033842790
도형과 함수에 대한 기초특강 추천합니다.
두 삼각형 BDE와 ABC가 닮음인 걸 확인하는 논리가 무엇인가요?.?
해설 정말 감명깊게 읽었습니다..!
제가 제대로 가고 있구나 확인할 수 있었고요
굿굿!! 각A와 마주보는 각인 CDE의 합이 180도이기 때문에 각A=각BDE 가 된답니다.
이렇게 보는게 맞는거였네요
다음에 기회가 있다면 쌤 수열특강 들어보고싶습니당
수열을 심플하게 보는 눈을 기르고싶어서요..!
<16416-수학1> 수업을 들어보세요~
수열과 도형, 삼각함수 그래프까지 심플하게 정리합니다저문제 현장에서 첨봤을때 뭐지 싶었던..ㅋㅋ
충격적이었죠. 사실상 오답률 1위였던.
원 내접 사각형 성질이 핵심!
굿굿!
아 ㅋㅋ 승효쌤이 내 프로필에 Y 달아줬다고 ㅋㅋ
ㅋㅋㅋ.ㅋㅋㅋ.ㅋㅋㅋ 반갑다
조만간에 보자
교재는 따로 없나용?
라이브는 밴드에서 pdf로 올라가고, 현장에서는 프린트로 나갑니다~
라이브말고 녹화해둔걸 비용지불하고 볼수는 없을까요?