[수학칼럼] 기출의 일관된 흐름 (2)
(유모차에서 좋아하고 있는 얼굴들입니다^^ 불과 얼마전인데 더워보이네요 ㅋ)
안녕하세요? 오르비클래스에서 수학영역의 비밀을 강의하고 있는 박주혁t 입니다^^
주중에 한번 쓰려고 쓰려고 했는데ㅠ
쉽지 않네요ㅠㅜ 쪽지 답변하고 그러는데도 꽤 시간이 걸리고, 점점 학원에서의 상담과 질의응답은 많아지고 있습니다.ㅠ
여튼, 두번째 글을 이제서야 올리네요.
그리고, 공지로도 올라왔지만 수비 A,B형 모두 완강되었습니다~
개인적으로는 최상위권이라도 들으시면 도움이 될 만한 내용들이 있습니다^^
중위권이시라면 말할 것도 없고요.
항상 느끼지만 자작문제의 퀄리티가 참 좋네요~^^
포카칩님 문제는 항상 느끼지만, 수험생에게 정말 도움이 되는 문제들이라는 생각이 듭니다.
자, 오늘의 이야기를 시작해 볼까요?
--------------------------------------------------------------------------
지난번에 기출문제를 풀다보면 느껴지는 하나의 '흐름'이라는 것에 대해서 이야기 했습니다.
그래서 기출학습을 할 때는 무작정 문제만 반복해서 푸시면 레벨업이 힘듭니다.
2회독, 3회독으로 넘어가면서 '유사성' 과 '흐름'을 느끼시는 수준이 되면 레벨업이 진행되고 있는 것이지요.
이번에 할 이야기는 지난번 칼럼 마지막 문제에서 쓰인 "여사건" 입니다.
교과서의 표현처럼, 일반적으로 여사건은 '적어도~'라는 조건에서 쓰입니다만,
기출을 공부하다 보면, 여사건을 구하는것이 '편리'한 경우가 분명히 있습니다.
다시말해, 확률이나 경우의 수를 구해야 하는 경우, 우리가 머릿속에 넣어두고 언제든지 꺼내써야 하는 것 중의 하나가
"여사건" 인 것이지요.
"필요하다면 언제든지"가 포인트입니다.
이 문제를 보지요.
유명한 경우의 수 문제입니다.
아마 금방 푸실수 있거나, 이미 문제를 보는 순간 해답이 떠오르신 분들도 많을 것 이라고 생각합니다.
당시의 EBS해설입니다.
흐음.
꼭 이렇게 풀어야 할까요? 다시 문제로 가 보겠습니다.
파란 밑줄이 힌트군요,
저 표현은, 전체에서 출발점=도착점인 경우를 빼면 된다는, 여사건을 사용하라는 힌트였네요.
그림 1번을 참고하면, 전체경우의 수는 4 x 3 x 3 x 3 이라는것을 알 수 있네요.
로봇을 길을따라 어느방향으로도 움직일 수 있지만, 한번 지난 길은 다시 갈 수 없기에,
처음 4방향 x 그다음 3방향 x 3방향 x 3방향 = 4 x3 x3 x 3 =108 입니다.
여사건을 사용해 볼까? 했으므로 출발점과 도착점이 같은 경우를 생각해보면, 그림2와 같이 총 8가지 경우군요.
따라서, 108 - 8 = 100 입니다.
이 문제는 문제에서 여사건의 힌트가 주어진 경우입니다.
하지만, 항상 그렇지는 않지요.
다음 문제를 볼까요?
이 문제도 유명한 문제네요.
이 문제 역시, 보자마자 풀이와 답이 떠오른 분들이 꽤 많으리라고 생각합니다....만,
풀어보는게 낫겠죠? ^^
역시 당시 해설입니다.
뭐, 중복조합을 케이스 분류해서 풀어야 하는 전형적인 평가원 스타일이네요.
이 풀이가 틀리거나 나쁘다고 말하고 싶은 건 아닙니다만,
이 문제도 여사건으로 풀 수 있습니다.
다시 문제를 볼까요?
자, 조건에 집중해 봅시다.
왜 초콜릿은 '4개 이하'이고 나머지는 '이상' 일까요?
이 부분에 포커스를 맞추고 생각을 해보겠습니다.
이런식으로 생각할 수 있겠네요.
그러면 X(초콜릿사탕)에 집중한 것이니까,
전체 사건을 이렇게 두면 되는군요!
자, 그럼 정리하겠습니다.
이런 상황이고, 음이 아닌 정수해 조건이므로 둘 다 중복조합입니다.
이므로,
220- 35 = 185 가 답이네요.
어떠세요, 여사건이 조금씩 머릿속에 자리를 잡아 가시는 것 같으신가요?
모든 문제들이 여사건으로 풀린다는 말이 아님을 잘 알아두셔야 합니다.
하지만, '여사건을 사용했을 때' 반드시 효과를 보는 경우도 있음을 알아 두실 필요는 있다는 것입니다.
평가원 기출을 살펴보면, 직접나열 or 수형도를 그리는 경우가 가장 효과적인 경우가 있고,
지금처럼 여사건을 잘 생각해보면 상당한 이득을 보는 경우가 있습니다.
오늘 칼럼의 마지막 문제입니다.
너무 유명한 문제이죠?
다들 ' 아, 이거~ ' 라고들 하실거에요^^
그리고 실전에서 이 문제를 만나신 분들은 그 '아찔했던' 느낌도 기억나실 것 같습니다^^
우선 풀어보시고! (어렵습니다. 당시정답률 3~5% 추정)
물론, 풀이가 전부 다 생각 나시는 분들은 스크롤 하셔도 됩니다^^
우선은 Ebs풀이입니다.
흐음... 뭔가 부족한 느낌이 드는데요? ㅋ
그래서 포카칩님의 풀이도 준비했습니다.
네, EBS 풀이는 a<b 인 상황에서 설명이 좀 스리슬쩍 넘어간 경향이 있네요 ㅋ
포카칩님 풀이가 정확합니다. 역시 -_-b
이제 풀이가 이해는 가셨을것 같고...
오늘 칼럼의 주제가 '여사건' 이 기출문제의 흐름 중에 있다는 거였습니다. 그죠?
자, 그럼 고1 교과서로 돌아가 보겠습니다.
--------------------------------------------------------------
--------------------------------------------------------------
자, 굳이 교과서가 어디 것인지 말씀 안드리는 이유는,
이 내용은 교과서, 기본서 등등 ( 정석 , 개념원리, 바이블 등등....)에
항상 나오는 말 그래도 '기본적인' 개념이기 때문입니다.
자, 이 명제 관련된 내용을 통해 우리가 알 수 있는 내용은?
'어떤' 의 부정은 '모든' 이다. 라는 것이지요.
자, 2012 수능문제를 다시 볼까요?
a 도 b 도 9개 식이니까, 전체는 9 x 9 = 81 개 이고요,
'어떤' 이란 표현이 있으니 여사건을 생각할 수 있네요!!
기본개념을 꺼내어 사용하면, 우리는
이녀석이 문제의 부정이란 것을 쉽게 알 수 있고,
여사건을 이용하게 되면,
문제가 생각보다 쉬워진다는 걸 곧 깨닫게 되실 겁니다^^
(총 81개 에서 이 경우를 빼버리면 되겠순요~)
왜냐면, 우리가 그동안 기출학습을 제대로 해 왔다면, "모든"실수에 대해 성립하는 상황은 익숙한 상황이거든요.
하나라도 안되는 것을 찾아낸다면, 그 부분은 아예 날려버려도 가능합니다. 그죠?
자, 그러면 a < b 인 경우를 생각해 봅시다.
우리가 구해야 하는 상황은 모든 실수에 대하여 PQ의 길이가 10보다 커야 하므로,
t가 1 이상인 상황에서 (1),(2)는 절대로 답이 될 수 없음을 알 수 있습니다. (길이가 0인 경우가 생기니까요)
문제는 (3)인 상황인데,
t=1 인 경우가 PQ의 최솟값이므로,
인 상황을 만족하면 되네요. ( 1 이상 인 모든실수 t에 대하여)
그러니까 이런 부등식이 성립하냐 인데,
어차피 a도b도 2~10 까지의 숫자이므로 불.가.능. 하네요.
즉, a < b 인 경우가 모두 성립하지 않으므로, 생각할 필요가 없어졌네요^^
그럼 남은 것은
a >= b 인 경우이군요!!
이 경우는 두 그래프가 만나지 않으므로,
PQ의 최솟값이 10보다 크면 모든것이 ok 인 상황이군요!
t=1 일때가 최솟값이므로,
를 만족하는 것을 찾으면 됩니다.
문제에서 (a,b)=(4,5)일때가 성립한다고 했고, 우리는 지금 여사선인 상황을 따지고 있으니까,
반대로 생각해보죠.
(a,b) = (4,4) , (4,3), (4,2) 어? 다 성립하네요~
(a,b) = (3,3) , (3,2) , (2,2)는 성립하지 않는다는것은 이제 금방 알 수 있습니다~
즉, 여사건을 생각하더라도 주어진 예시 (4,5)는 그 기준을 잡는데 도움을 주는군요!
그럼, 이제 답을 계산할 때 이군요~
주어진 조건을 만족하는 순서쌍은,
(4,4) , (4,3), (4,2) : 3개
(5,5) ,(5,4) ~ (5,2) : 4개
(6,6),(6,5) ~ (6,2) : 5개
....
(10,10,),(10,9) ~ (10,2) : 9개
이므로 3 + 4 + 5 + ... +9 = 42 이네요~
즉,
입니다.
설명이 좀 길었지만,
여사건이 어떤식으로 사용되어지는지 아셨을 거라 생각합니다.
앞에서도 계속 말하고 있지만,
모든 문제들이 여사건으로 풀린다는 말이 아님을 잘 알아두셔야 합니다.
하지만, '여사건을 사용했을 때' 반드시 효과를 보는 경우도 있음을 알아 두실 필요는 있다는 것입니다.
그리고 경우의 수 or 확률에서는 이것이 매우 중요합니다.
오늘은 여기까지 하죠! ^^
주말 잘 보내시고요~
p.s. I 공도벡 킬러대비는 준비중이고요~ 베르테르님과 협의는 끝났고, 100문제정도 진행할 생각입니다 ㅋ
p.s. II 포카칩 모의평가 예비시행은, 가능하면 온라인응시를 하세요^^
6평대비에 상당한 도움이 될 겁니다~
박주혁t 자기소개 : http://orbi.kr/0003633088
박주혁t 인강(수학영역의 비밀) : http://class.orbi.kr/group/2/
제 칼럼은 오른쪽에 제 사진 아래 태그를 클릭하면 주욱~ 뜹니다~^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1월달쯤에 수1 수2 25뉴런 완강할거같은데 26을 또해야할까요 ㅠㅠ 안할려햇는데...
-
실채 나오면 더 많아지려나
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 5
논리싫증주의자는 관심이 없다
-
존잘 옯붕이 연애한대 요새 안 들어오더라....넌 진짜 믿었는데
-
대충 힙찔이와 팝송과 인싸픽과 십덕을 버무린
-
현우진 쌤 OT 보니깐 마렵네 재밌겠다
-
ai전에서 10명중에 내가 젤 못하는거 보고 접음
-
수능 성적표가 아직 나오지 않은 이른 시기이지만 수능 풀면서 한 문제를 안풀더라도...
-
침잘놓을거같은데
-
연애 많이하게 해주세요 좋아하는 사람이랑 사귀지 못해서 슬퍼하는 일이 없도록
-
2년만 젊었어도 했다 ㅇㅇ
-
왜 15개정으로 사서 들었지..ㅜㅠㅠㅠㅠㅠㅠㅠㅠㅠ 큰상관 없으려나요?
-
OT에서 개정 시발점을 추천하시길래 강의 목차만 봤는데도 ㅎㄷㄷ하네요 엄청 자세하고...
-
놀러가야하는데 2
돈없
-
연대과잠 너무 많이 보임
-
실제로 ADHD약 복용중 근데 약 먹어서 집중력은 올라갔는데 실수는 안 사라졌음...
-
지듣노 3
꼭 들으세요
-
강의실에서 드릴푸는건가? 고려대가 반수하기 좋다던데 그건또 먼얘기인지 아시는분 반수...
-
서울대 의류학과를 목표로 하는 고2입니다. 내신이 많이 안 좋아서 cc가 뜰것같은데...
-
컨설팅 0
서울대/지방한 중에 고민중이고 컨설팅 받아보려 하는데 한 번도 받아본 적이 없어서...
-
7시수면 10시기상 18
언제 다시 자냐? 진짜 큰일났다...
-
아버지가 재수하고 싶었는데 할아버지랑 할머니가 반대해서 못했음 아버지도 그게...
-
격세지감을 많이 느끼네요 얼마 안된 것 같은 노래도 4년전, 7년전 등..
-
왜이래
-
부모님은 수능 전부터 재수는 안시킨다고 하셨고 수능 끝난 후인 지금도 재수시킬...
-
= 투움바 파스타 맛이 어떨라나 궁금하네
-
내가 다 아픔 ㅠㅠ 들으면서 생활을 반성해보는 시간을.....
-
수학 고2 3모 1 (백분위 98) 9모 1 (백분위 98) 10모 2 (백분위...
-
갠적으로 독재하고 싶은데 독재할 거면 재수하지말고 기숙학원 가라고 하시네...
-
댑악
-
부모님 눈치 안 보이게 살 림살이 자 알해야겠다ㅇㅇ
-
편견인것 같긴한데 진위여부가 궁금함
-
중경외시 6
중경외시 사회과학 관련 학과(부)들 생각 중인데 실채점 이후에도 가능할까요…? 요즘...
-
어제 디엠 안봐서 오늘 톡 보냇는데 이것도 안봄.. 단톡방도 며칠째 1...
-
인설약/인설수랑 겹치나요? 핑프 ㅈㅅ
-
기출 두 세번 돌리면 되나 그래도 한 몇등급정도가 적절할까요? 어릴때부터...
-
설레는 노래 4
시계를 더 보채고 싶지만~~ 마인드 컨트롤! 나보다 어린 아이유라니..
-
동해안에 해돋이 보러 가기 vs 보신각 종 울리는 거 보러 가기ㅋㅋ(한 번도 안 해 봄)
-
중딩생활하면서 최대전교등수가146중에13임...너무공부를어중간하게함... 제가가게될...
-
먼 훗날 우리~~ 같은 날에 떠나~~
-
이러면 언매 하는 의미가 없지 않나
-
범벅해놓은거 아니겠죠?ㅠㅠ 마지막에 22 검토하다가 종쳐서 걍 냈거든요 고3-재수...
-
제가 그런데 특이케이스인듯 내신 2.8 현역수능 중대낮과 2번째수능 고대 높문과
-
김승리 이감 0
김승리T도 드디어 이감이구나 작년에 현장 한수였는데 드디어..
-
가장 경쟁률 박터지나요 철학? 올해 수시땐 철학이 좀 박터졌던거같은데
저게...보자마자....풀이가.....떠오른다구요.....???ㅎㄷㄷㄷ
ㄷㄷㄷㄷ
기출 경험치를 높이면 불가능하지는 않습니다만,
칼럼의 목적은 시험장에서 써먹는 것 이외에도,
사고의 유연성을 강조하는데에도 방점이 찍혀 있습니다~^^
수학에서 틀에박힌 사고가 점수향상에 걸림돌이 되거든요~
글 잘 읽었습니다. 근데 이 문제와는 별개의 다른
개인적으로 수학 질문드려도 될까요? 일단 쪽지 보냅니다~
답변드렸습니다~^^
오 제작년 30번문제 풀이 신선하네요~ 좋은거 많이 얻어갑니다~
감사합니다~^^
좋은 글 감사합니다~ 태그해놓고 생각날때마다 읽고 있어요
아 그리고 새글마다 애기들사진 기대되요! ㅎㅎㅎ 너무 예뻐요
감사합니다~ 애기들이 워낙 무럭무럭 자라서요ㅜ
올릴때마다 커져있는 아이들을 발견하지요 ㅋ
초절정 귀여운 아가들ㅎ identical twin인가요?ㅎ
ㅋㅋ
fraternal twins 입니다~^^
그렇군요. ㅎ 둘이똑같이 동글동글하고 잘생겼는데 ㅎ 신기하군요 ㅎ
한 문제에 여러가지 풀이가 가능한 문제들은 여러 가지 풀이가 다 고려되서 나오는 거겠죠??
네, 제 생각은 그렇습니다.
출제의도가 있으면서, 다른 풀이를 열어두는 것 같아요^^
ㅎㅎㅎㅎㅎㅎㅎ제가 기출풀면서 털렸던 아이들이네요ㅜㅜ
수비2회독中,마플 풀이 중입니다만, 아직 패턴화라는게 크게 와닿지가 않습니다. 어떻게 공부하면 좋을까요/
문제풀 때 기계적으로 n회독 하지마시고~
문제의 조건과 선지를 꼼꼼히 분석하시고, 기출을 풀면서 내용과 풀이의 유사성과 차이점을 체크하시면서 공부하세요~^^