대치동어둠의양적관계어드밴스드유리함수점근선궁극의얼티메이트해석법
이번 글은 편하게 반말로 함.
제목을 보면 알 수 있듯이 이 스킬 비슷한 무언가는 쓸 일이 어지간하면 없음.
지금까지 쓴 칼럼들은 어려워도 쓸 일이 꽤 있었는데 이번엔 쓸 일이 없는거 같음
쓸 일도 없는 스킬을 왜 칼럼으로 쓰느냐? 심심한데 기분이 좋아서 그럼
다음부턴 쓸모있는 칼럼을 올리겠음ㅎ;
(추가 : 아니 이거 어쩌다보니 메인왔는데 혹해서 남용하지 마세요 취급위험.. 어지간하면 불리하고 사설문제에 가끔 유리한느낌)
일단 이 방법은 내가 처음 생각한 풀이는 아니고, 모 머리좋은 고2학생이 알려준 풀이임. 걔 좀 천재같음. 아니 천재맞음 ㅇㅇ. 아무튼 이 방법은 상황에 따라 풀이가 매우 단축되지만, 상황에 따라선 풀이가 매우 늘어짐.
혹시 머리가 아주아주아주 비상한 몇몇 학생들은(ex : 이 풀이 알려준 학생) 써먹을 수 있겠지만 일단 나는 못써먹을듯(쓰지 말란말). 시작합시다.
화1에서 유리함수가 어케 쓰이는지 모른다면, 참고용으로 이전 칼럼을 보고 오면 좋을듯
아 근데 사실 아직 유리함수 잘 안쓰면 이 칼럼이 쓸데가 없나?
걍 아직 유리함수 모르면 좋아요만 누르고 가줘ㅁㄴㅇㄹ
이 문제에서 몰수 비를 그래프로 그리면 아래와 같음
근데 알다시피 유리함수는 점근선을 가짐. 지금 넣어준 B의 몰수가 m/a면 점근선인건 아는데, x축 점근선을 모름. 그 높이를 대충 k라고 잡자.
근데 이 k가 뭘 의미하는지 미리 생각해보면, B를 음의개수로 무한히 투입했을 때 생성물/반응물이잖음. 그리고 한계 반응물은 계속 B임
그러면 C의 개수는 음수로 달리고, A의 개수는 양수로 계속 달릴거임. 이때 C/A는 k이고, 2/a가 될 거라는걸 알 수 있음. 이해 안될테니 식으로 써서 보여주면
ㅇㅈ? 계수 비가 될거임.
암튼 나머지 설명은 밑에 그림으로 대체함. 투입한 B의 양이 2일때 분수 값이 4니깐..
즉 점근선의 교점에서 유리함수 점을 찍었을 때, 넓이가 같다는걸 이용해서 식을 세우는게 이 풀이의 핵심임
1) 점근선의 의미를 생각해서 점근선의 값을 구하고
2) 넓이를 통해 식을 세운다.
근데 보다시피 식이 훨씬 더러움. 심지어 투입한 B의 양이 3일때는 유리함수 적용도 못하고, 반응식 깡계산 해야함. 뭐 이런..
그래도 마지막 마무리엔 유용할수도 있음. 이렇게. 참고로 이 문제에서 m=9 a=4
사실 이렇게 보면 이게뭐냐..싶을텐데 사실 아래 두 문제 예시로 더 풀건데 이건 또 매우 잘먹힘.
왜 안좋은 상황만 보여줬느냐? 혹시 혹해서 유리함수 문제마다 이 풀이 쓰려고 할까봐. 눈에 팍 들어오는 직관적인 상황에선 가끔 유리한데, 대부분의 상황에선 불리하니깐 안쓰는게 좋음.
그래도 아주 쓸 일은 없는거 아닌게, 평소에 유리함수를 자주 그려서 푸는 편이고 계산 직관이 뛰어나고 수학을 잘하는 학생이라면 이거 써도 될듯. 근데 그러면 이미 20분컷 만점일텐데.. 뭐 살아남기 모의고사 25분컷 50점을 위해선 유용할수도 있음 ㅁㄹ
암튼 다음 문제를 한번 이걸 응용해서 풀어보자
풀이 1
풀이 2
솔직히 이 경우엔 꽤 쓸모있는 것 같음. 이렇게 넓이를 구하기 편하고 그림이 유리함수로 미리 주어진 상황에선 생각보다 꽤 쓸모있음.
혹시 이 스킬을 쓸 생각이 있는 학생이 있다면, 앞선 문제처럼 유리함수 점근선이 오른쪽에 있으면 쓰지 말고, 이 상황 처럼 유리함수 점근선이 왼쪽에 있는 상황은 꽤 쓸만한것 같으니 이 때 써보면 좋을듯.
마지막 예제
풀이(귀찮으니 부피=몰수로 두고 풀음)
이 문제도 되게 유용함. 마지막 마무리에서 일차함수 기울기를 이용했는데, 투입한 B의몰수/C의몰수를 평행이동 하고 미분하는 느낌. 이거 말고도 다른 사설문제들에 적용 해 봤는데 꽤 풀리는 경우 많음. 유리함수 그래프가 이미 그려져있거나 그리기 쉽고, 왼쪽에 점근선 있으면 해볼만한 것 같음. 더 확장 가능성이 있어보이기도 하고..
핵심은
1)점근선의 의미 상상 및 값 추론(물질의 개수가 음수가 되는것을 허용하고 무한으로 극한을 보내기, 한계반응물은 고정)
2)유리함수 넓이 이용/유리함수 식 이용
이거 두개. 혹시라도 쓸 생각이 있다면 충분히 많은 연습을 하고 쓰는걸 권장하고 이 풀이로만 문제를 풀고 정석풀이를 연습 안한다면 수능 당일날 위험할 수 있으니 정석 풀이도 꼭 연습해보길 바람.
끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
허수 탈출 시작
-
중경 가능? 0
성대는 가능?
-
1년이 지나고 결과가 나오고나니 그렇게 우려했던 "한번더"가 여지없네요.....
-
그렇다고 국가기관에서 사탐이 과탐보다 수준이 낮은 과목이다 라고 대놓고 공식적으로...
-
비트코인... 4
근데 이제 비트코인으로 인생역전할 시대가 저물고 있는거같음... 그렇다고 알트...? 흠...
-
대학 라인 한 번만 봐주실 수 있나요ㅜㅜ 영어를 너무 망쳤는데 클까요… 생윤...
-
성대 인문과학계열입니다..
-
애기들만 있네
-
서리 4
약 1시간 전
-
내일나왔으먼….
-
...의료이용률 OECD 평균 가즈아~
-
자퇴안할건데 별론가
-
나를 은근 비웃고 무시하는 사람<— 어케 대처하나요? 7
앞에서 똑같이 할 말 다하고 싸울지 걍 손절치는게 맞는건지 모르겠네요
-
요즘 목표가 생겨서 수능 공부를 다시 시작해보려고 합니다 목표는 서울대 공대이고...
-
ㅈㄱㄴ 미적할때 좀 써보고싶은데 어캐쓰는지 모르겠..ㅠ 속함수를 90도 회전시키고하는거같은데..
-
소아외과 전문의가 아닌 일반외과 전문의가 응급소아환자 수술했다고 10억원 배상...
-
수학 조교 면접 0
면접 때 주로 뭐 물어보나요??? 그냥 다른 알바 면접이랑 비슷한가
-
ㄷㄷ이
-
스타벅스도 편의점도 있네 이동네사람들은 다 경운기타고다니는줄알았는데
-
이영수쌤한테 꽂혀서 차타고 왕복 1시간 지하철 2시간을 하려고 하는 걸까.....
-
누가 나좀 기절시켜줬으면
-
강사 추천좀 해주세요
-
ㅈㅈ 어디감 7
?
-
10시까지만 일본어 공부 좀 하다가 오트밀이랑 닭가슴살 쳐먹어야징
-
밥먹고바로눕기 9
-
확통특 7
확통특: 쉽게 나오면 왜이렇게 쉽게나왔지하고 3번풀어서 시간 많이걸림 어렵게 나오면...
-
컷은 모르겠고... 그냥 지1이 1 뜨고 생2가 2 떴으면 좋겠네요 ㅠㅠ
-
인스타에서 프리랜서들이 장소 구분 / 시간 구분 없이 원할때 쉬고 원할때 일한다...
-
기출들은 다 빡셌는데 왜이렇게 쉬운것이냐 잘쓴거 같긴 한데 너무 쫄리는데
-
전문대 지방대 어디쯤 갈 수 있는지 알려줘
-
어케 놀지 5
뭘 해야 잘 놀 수 있을까
-
시대인재 현강 0
시대 현강 국수지구 기출도 다루나요?
-
심사숙고하는 성격이면 인생 사는 데 좋을 것 같지만 꼭 그렇지도 않더라구요...
-
육군에서 26수능을 볼 생각입니다. 지금 일병2호봉이고 병장 달때쯤 수능을...
-
이이잉 ㅜㅜ
-
병역 문제가 최악이구만 29
큰 목표를 세우고 싶은데 여기 발목이 잡혀서 끝없이 계획이 지연되는구나
-
아니었구나
-
상평시절 17이전말고 18부터 공부하는 게 맞죠?
-
난이도: 하~중 타임어택: 중 미적: 기본적인 개념에 충실 딱히 어려운건 없었음...
-
1컷 얼마임? 고인물들 고려해서
-
N수생이고, 올해 지방 의대는 가능한 성적을 맞았지만, 한 두개만 더 맞았으면 하는...
-
국어와 관련하여 질문을 받아보면 많은 학생들이 글을 ‘이해‘하는것이 무엇인지...
-
아침 6시에 깨는 이 갓생 뭐임?
-
평소에 공부할때 틀리면 100프로 실력이라고 생각하고 공부해야함 애초에 그런걸...
-
공기업vs약사 6
공기업 초봉 4000~5000만원 평균연봉 8000~1억원대 약사 서울권 약...
-
Yg는 진짜 아웃풋이 ㅋㅋㅋㅋㅋ 걸그룹은 블핑 보이그룹은 빅뱅 ㅋㅋㅋㅋㅋㅋ
-
그래도 ㄱㅊ은 편임? 일단 유리한 정황인거지?
-
에스컬레이터 있는 학교는 첨보네 ㄷㄷㄷ 310건물이 유독 좋은건가요..
-
오쿠리시마스
-
to 친애하는 오르비언님 - 이정도론 메디컬 힘든가요..? 8
아무래도 영어 3이 치명적으로 작용하겠죠..? 혹시나 대략적인 라인 알고계신다면...
ㅁㅊ
음의 반응이라...
어떻게보면 화2를 끌어온건가
그런 느낌도 있고 화1을 뇌절의뇌절을쳐서 수리적으로 해석한 느낌
사실 이렇게 보는게 맞는듯
흠 좀더 찾아보고 올게요
아니 화1 머치동 강사들도 이런 스킬은 안 쓸듯...ㄷㄷ
wow..
저거 알려주신분 수학 고정100일듯;;
와 이건 진짜 신기하네 ㅋㅋ
생각지도못했다 ㅋㅋ
정신적으로 충격 받음 저게 뭐꼬
이. 이게 머노
누구는 1문제 푸는데 30분 걸리는데...
wow
밑에 예제 둘 다 깡계산으로 풀었는데 이게 능지차인가
당연히 저도 처음볼땐 깡계산..
화1에서 기울기도 땡큐한 건데 유리함수라... 대단하네요
뭔소린지는 모르겠지만 개추
한줄요약 : 그냥 생지해라.
안써도됨....
죄송합니다.. 생지러에게는 너무 어려워요..
물1 사세요...다항함수밖에 안 나오는 물1 사세요....
어림도없지 전기력 실계산문제!!
여러분 쉬운 물2하세요
이해는 못했지만 신기하니 좋아요 박고 갑니다
요즘에는 화학 문제 풀 때 '유리함수' + '점근선'까지 끌어와야 하는건가요?
어후... 타임어택이 예전보다 훨씬 심하겠네요.
아뇨 심심해서 쓴 글이고 이렇게까지 할 필요는 전혀 없어요
사실이런 풀이를 만들만큼 어렵게내는 과탐이 이상한거
오빠 제목이 너무 깐지나요
기출은 씹으면 씹을수록 새로운 맛이 나네요..