미분 고난이도 30번
ㄱㄱ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2023 고3 4모(국어/수학) Crux Table [N2304/N2305] 4
★ 자료를 공유하실 때는 반드시 출처를 밝히셔야 합니다. 본 글의 작성자는...
ㄱㄱ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
2023 고3 4모(국어/수학) Crux Table [N2304/N2305] 4
★ 자료를 공유하실 때는 반드시 출처를 밝히셔야 합니다. 본 글의 작성자는...
28
틀렸습니다ㅜㅜ
아 아래 피카츄님 댓 보고 알았네요
aa가 아니라 aa'이군요 ㅋㅋㅋ
식은 맞았는데 깝쓰..ㅠ
아...그랬군요 진짜 아깝네요ㅜㅜ
풀어주셔서 정말 감사합니다!
모든 항의 계수가 유리수 + 미분계수가 0인 지점에서 연결이 되어야 하고, 일대일대응 조건과 fexp(f)가 양쪽 끝에서 점근선 y=0을 갖고 이차함수 대칭축과 동일한 선대칭임을 생각했을 때
f(1)= -1이고 f(0)=8이어야 하는데 최고차계수가 -1이면 그러한 이차함수가 존재하지 않는 것 같습니다...
캐치하지 못한 게 있을까요.
평행이동한 이차함수와 f exp(f)가 아구가 맞아서 증가함수가 되어야 하니깐 a=연결지점=1이고
따라서 f는 x=0 선대칭. 이런 식으로 생각했습니다.
아 설마 이거 f(1)=0이라서 초월함수 미분계수랑 이차함수 ㅁㅣ계랑 우연히 맞아떨어져서 연결되는 건가요;이러면 계수에 무리수가 없어도 가능할 것 같긴 한데
이러면 g'=0이 no solution이 되어버려서 안될 것 같네요
f(0)=8이 나온 과정을 여쭤봐도 될까요?
풀었습니다
α=1
f의 대칭축을 x=k라고 하자.
1-k= a
f(1)= -1 , f(k)=8
-> f(x)= -(x-k)^2 +8
-> -(1-k)^2 +8 = -1
-> (1-k)^2 = 9
-> 1-k= 3 := a, k=-2
f(x)= -(x+2)^2 +8
f(aα)= f(3)= -25+8=-23
23
ㅠ 제가 틀렸군요
제가 틀렸을수도...
잘 푸신거 같은데 답이 계속 달라서 뭐지 했네요. 마지막줄 계산실수 빼고 답 맞습니다ㅎㅎ
엌ㅋㅋㅋ17이근요; 어떻게 계산을 저따구로 했지
정답!ㅎㅎ
풀어주셔서 감사합니다~
1-k가 -3이 왜 안 되는지 좀 알려주시면 안 될까요???
1>k이기 때문입니다. 대칭축이 1보다 왼쪽에 있어야 해서요
아하 감사합니다!!
해볼까하다가 안 했는데 도전해봅니다
저는 답이 없는 걸로 나오는데 부탁드립니다
아 뭐야 a랑 α였군요 폰으로 작게 봐서 둘다 a인줄...에휴 제가 잘못 봤습니다 문제 없을 듯
헉 ㅋㅋㅋㅋ
아ㅋㅋㅋ담부턴 헷갈리지 않게 만들겠습니다
답이 2인가요 왜케 느낌이 불안하지
틀렸습니다ㅜㅜ
x>1에서 미분한걸 계속 f(X)2+f'(x)로 봐가지고 f'(1)=-1 나와가지고 고민했네요 ㅋㅋ 왜 미분을 못해가지고 이러지
17...?
정답입니다!!
풀어주셔서 감사합니다~~
감사합니다 !! 계수가 유리수란 조건이 기출에서 본적이 있어서 아이디어를 좀 쉽게 얻은거 같아요!
아하 그랬군요ㅎㅎ