학생들이 틀리기 쉬운 내용 3번째!
전에 제가 쓴 글을 칼럼이라고 좋게 얘기해주셔서 감사합니다!
칼럼은 아니고 참고용이지만! 간단한 칼럼으로 생각하시고 편히 읽어 주세요~
궁금하거나 이해가 안되시는게 있으신 분은 언제든지 쪽지 남겨주시면 답장 드리겠습니다!
0 XDK (+550)
-
500
-
50
-
그냥 사람들이랑 부대끼는게 재밌어서 하는거임 근데 오늘은 좀 재밌게 즐기긴 한듯...
-
정의는 언제나 승리하니깐 어쩔 수 없나
-
잡 0
니다. 오늘은 내일을 위해 일찍 잠
-
아니 ㅅㅂ
-
암튼 개꿀
-
슬슬나가볼까 1
어디를 가볼까요~~
-
덕코가 실효성이 없으니까 생긴문제임
-
아니면 노베 이후 뉴런으로 가나요
-
애니 봐야하는데 하루종일 마크만 할거 같아서..
-
매일매일하루에몇번을오가는그길이너무너무너무너무질림
-
무슨 이모티콘을 달아야 하는지는 팍팍 감이 오는데 어디에 있는지를 까먹어서 찾는데 한참 걸림
-
1학년때딴게과연취업후에쓸모가잇를지는잘모르겟지만
-
또 나만 저능하지
-
이제 자야겠음뇨 활동랭킹 방금전까지 20위였는데 11위되니 현타옴뇨
-
이미지 적어봐 4
예상되는말들이 어차피 많긴함
-
전글 이미지는 마크중이라 다하고 적어드림
-
내 이미지 적어주셈뇨 10
-
100문 100답인가 질문 일렬로 엄청 적힌 사진 있는데 질문마다 번호 매겨져있고...
-
사람 많을때 또 써줘야겠다
-
올해 19번까지 15번빼고는 다 풀었는데 14번에서 되게 시간 많이 썼어요… 시간도...
-
내가 졌다뇨.. 4
잠뇨
-
여러분이 올린 모든 글들은 제 뇌에 저장되어 있습니다.
-
난 청정수
-
이미지 나도 써줄래 31
모르면 모른다고 할끄임
-
아카이브가 정확히 뭔가요??
-
난 이미지 안써줌뇨 20
ㅅㄱ뇨
-
나도 이미지 써줌 24
잠깐 마크 농작물 수확만 하고 와서 바로 써줌
-
진학사에선 숭실대가 추합으로 떠버리던데 가능한가요
-
초면이면 첫인상 말씀해드림
-
옯창빙고 아싸빙고
-
1. 수학 모든 영역을 건드려 볼 수 있다. 2. 시간 관리 연습을 할 수 있다....
-
난 이분야에선 져본적이 없음뇨
-
이건 뭘 뜻히죠?
-
앗싸 커뮤 잘 골랏다.
-
내일 일정 8
일어나서 밥먹고 씻고 마크하기 근데 애니도 봐야되네.. 아 한번 나갔다 오기도...
-
easy 8
컷 아임더 베스트
-
학교 옮기고 싶은 생각이 안드는거지 전과 복전 까다로웠으면 진작 수능 쳤을 듯
-
본인 오르비 24시간 상주하는데 오르비 매니저 직책 달아주셈뇨
-
10만덕 넘으면 옯창
-
덤벼
-
나 옯창인가 11
옯뉴비같음
-
!!!!!!!!!!!! 토익 책 추천 부탁드립니다!!!!
-
전쟁 선포함뇨 1
테러리스트와 협상은 없다
-
서울대전기탈출 << 이분 goat셨는데 결국 설의 가셨는지 궁금
-
머임 왜또글삭함 1
인사도못하게만들면 어쩌라는거임
-
수능은 안치고 싶다 점점 현실이랑 타협하게 되는 느낌이 드네요 그냥 군대를 빨리갈까
-
이미 예상하고 안자고 있었음뇨 ㅇㅇ
-
잔다 2
특) 안잠
올해 교육청인가요?
고3 10월 학평입니다!
그래서 어떻게 푸는 건가요
sinx=루트(1+cosx)에 파이, 2/3 파이, 4/3파이를 대입해서 값이 같을때의 x값을 택해주면 됩니다!
예를 들어 x값에 파이를 대입한다치면 sinx=0
루트3(1+cox)=0 이므로 x가 파이일때는 선택 가능합니다!
그 파이값은 직관인가요..? 시험때 다시 저 문제를 보면 그렇게 생각을 못할거같은데 ㅋㅋㅋ ㅠ 왜 파이 2/3파이 4/3파이인지 설명해주실수잇을가요
cosx=-1일때 x의 값이 파이입니다!
그리고 나머지 값은 cosx값이 -1/2일때 입니다
아 제가 궁금했던 건 그 코사인 값을 특정할 수 있는 이유가 무엇인지가 궁금했었던 거였어요 ㅎㅎ,, 그냥 구하다보면 답이 나오는건가요.......
네 방정식을 풀다보면 나옵니다 ㅠㅠ
sinx/1+cosx=tan1/2x 으로 바로 바꿔서 푼 1인..
삼각함수 합성으로 푸셔도 됩니다! 어떤 방식으로 푸는건 중요하지 않습니다! 올바른 과정으로 풀었는지가 중요한것입니다!
헐!! 그래서 저 문제에서 시간이 엄청엄청 오래 걸린 거군요 ㅠㅡㅜ
1번 첫째문단 이유 설명좀 해 주실 수 있을까요 ㅠㅠㅠ
a<b 일때 즉 -2<1일때 제곱을 못합니다. 1번 경우는 항이 2개일때에서 3개로 늘었다고 생각하시면 됩니다!
양변을 재곱한다는 것의 원리는 a<b이면 양변에 같은수 a와 b를 곱하여 aa<ab, ab<bb이므로 aa<bb가 되는 겁니다! 여기서 a,b의 부호를 고려해줘야 하는 겁니다!
0<x^2<4 인 이유를 모르겠는데.....
-2<1이면 말씀해주신대로 4<-2 , -2<1 이므로 4<-2<1 은 말이 안 되니까 제곱을 못한다고 하신건가요???
근데 0<x^2<4은 어찌 나온 건지 모르겠습니다ㅠㅠㅠ
-2<x<1은 -2<x<=0 또는 0<x<1입니다.
-2<x<=0 또는 0<x<1 는 0<=-x<2 또는 0<x<1입니다.
0<=-x<2 또는 0<x<1는 이제 모두 양수니까 0<=x^2<4 또는 0<x^2<1입니다.
0<=x^2<4 또는 0<x^2<1는 수직선에서 연립을 하면 0<=x^2<4가 되므로
-2<x<1은 0<=x^2<4이다 라는 결과가 나온것입니다!
원리를 알고 싶어하시는 모습이 아주 멋있습니다!
호훈t 해설강의 보세요 저거 다 설명해줌
답글이 더 이상 안 달리네요
깔끔하고 친절한 답변 너무 감사합니다!!!!!!
이제 이해가 가네요 !!
넵! 궁금하신거 있으시면 언제든지 물어보세요!
저렇게 풀고 답안나와서 당황했는데 그냥 그 근 나온더 다넣어보고 되는거 더했는데 그렇게 푸는건가요?
네 맞습니다!
저게 그 무연근인가보군요... 주의해야겠어요
감사함다
나형인데 안봐도 되죠? ㅋㅋ
이걸 응용해서 문제를 내지는 않지만 풀이중에 사용해야하는 경우가 나올수가 있어서 봐놓는게 좋아요!
3점 방어했다 개꿀
역시 생존왕 이근
저도 답안나와서 첨에 당황.. 덧셈정리로도 풀수 있더라고요