자작문제
아쉽게도 제가 답을 적어놓은 종이를 잃어버려서...풀이를 구합니다^^;
형식은 수능문제지만 수능에 나올 만한 문제는 아닙니다.(한 문제에 너무 많은 걸 물어보므로)
고등학교때 경우의 수 구하는 문제가 있었는데 그걸 약간 일반화시켜 수열화해서 만들었던 걸로 기억합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
점심 햄부거먹음 0
배불러
-
정시 모의지원에 나군만 개많음 ㅋㅋ
-
이성적이면 원래 지방 사립대도 힘든 성적인가요..? 세칸씩 뜨길래..
-
영상보다 책 흡수력이 더 좋은 편입니다 미적 뉴런 들을까요?
-
할아버지가 폐렴으로 입원하심 > (3일후) 연명치료 하시겠습니까? (???) >...
-
내옹
-
대학 라인을 잘 못 보겠음
-
다시 우울해지는구나 빨리 군대나 가야지
-
한달 내내 고민할듯..
-
대성패스만 있어서 궁금하네요 대성마이맥에서 비슷한 스타일은 누군가요???
-
대치동 현역 만점은 좀 소식이 잠잠하네 반포서초쪽이 좀 더 핫하고 물론 1틀 2틀...
-
다이4유급으로 해주지 이건 좀..
-
다들 사탐 쉽다 쉽다 하는데, 등급컷 꼬라지 보면 나름 변별 포인트가 있단 거 아님...
-
캬 좋다
-
만점 아닌 과목들 윗점수랑 표점증발돼서 합쳐지게 해주세요 제발요
-
가다도 봐야하나 근데 ㄹㅇ 쓸곳이없음뇨
-
화학은 그대로네 이거 개꿀과목 아님??
-
제발….
-
문과goat 나오냐?
-
98 98로 잡긴하던데 메가가 떨어질 가능성 있다고보심??
-
졸업하고 받는 생기부에 미인정안그여잇을라면 12월내내 현체아니면 병결로만...
-
원장연 인증)) 3
-
영어3,4 차이 0
여기서 영어 3 떴어도 급간 차이 없죠?
-
물1 1컷 48= 24 미적 1컷 89 지1 1컷 44= 24 미적 1컷 87 화2...
-
이거 하나에 대학이 달림
-
저 영어 2등급따리라서 전문성이 없어요... 하면서 거절했다 아잉도 B맞았는데 시ㅣㅣㅣㅣㅣㅣ발
-
근데 그 다음해부턴 몰?루ㅋㅋ
-
잘본 사람이 왤케 많지 싶으면 말이 없는 사람들을 생각해보면 상상이상으로 많을꺼임...
-
24 48점이 표점씹혀서 97이었는데 표본 급상승 뭐뇨이
-
의견주심 감사합니다
-
무료로 쓸 수 있게됐는데 재밌는거있나용
-
언매 92 전원 생존 화작 94 전원 생존 미적분 88 전원 생존
-
내년에 물2 치려고 했는데 시대인재 등급컷 ㄹㅇ이면 사탐런 가는게 현명한 선택이려나...
-
기구하다 8
기구
-
다는 적용 안됨 파라오 클레오파트라 이런거 봐도 모르는데 아스완 (도시이름) 보고...
-
없는거같지 부모님쪽 지인도 그렇고 걍 망한케이스가 거의없고 다 앵간히 나왔다는 말이...
-
81
-
총 맞았냐?
-
고위 공무원들 많은 충청도 의대 수시합격자들은 웃고있음 남은건 2025 의평원...
-
생윤 윤사 조합 어떰 사문 너무 능지가 딸림 윤사 많이 고엿나
-
기초적인 문해력이 없으면 공부가 안되니
-
얘들아 9모컷 -4점쯤이 수능컷이 될 거란다 ㅎㅎ 지금 맘껏 기뻐해
-
의대생 대폭 증가함?
-
영어 어려웠나 6
기억 속에서 삭제됨
-
아이고 두야 0
허리아파
-
333 5
으헤헤
포함과 배제의 원리에서 a_n = 3^n - 2^n - 2^n - 2^n +1^n +1^n +1^n = 3^n - 3* 2^n +3
b_n = 3*2^n-1 (첫자리는 3가지, 그 다음자리부터는 항상 2가지 가능성)
c_n = b_n - 6 = 3*2^n-1 -6 (단, n>=2일때) (b_n에 해당하는 것들 중, 맨 앞 두 수(예를 들어 1,2라고 합시다)가 1 2 1 2 1 2 ... 이런 식으로 반복되는 유형만 제거하면 되는데, 맨 앞 두 수가 결정되는 방법의 수는 6가지이므로)
d_n 은 대충 생각해도 맨 마지막 자리가 1,2,3 중 약 1/3씩 분배될 것이라 알 수 있으므로(맨 앞자리도), d_n /c_n 의 극한은 1/3이 맞을 것입니다. 하지만 직접 d_n을 계산해봅시다. c_n 중에서 맨 앞자리=맨 뒷자리 인 것의 개수를 e_n 이라 하면,
1.. c_n = d_n +e_n (이 식은 필요는 없지만..)
2.. d_n+1 = d_n +2e_n
3.. e_n+1 = d_n
입니다. 2,3번 연립 -> d_n+1 =d_n +2d_n-1. 풀면(특성근 등등) d_n = u* 2^n + v*(-1)^n (u,v는 상수)
d_2 =0 , d_3 =6 을 이용하여 u,v를 계산하면, u=1/2 , v=-2. 따라서 d_n = 2^n-1 +2(-1)^n-1. 따라서 극한은 1/3.
풀이를 적은 종이를 잃어버려서.. 라는 멘트는 누구의 멘트와 비슷한데..ㅎㅎ
와우! 정말 잘 푸시네요. 이 문제는 사실 d_n을 구하는게 핵심인데, 이렇게도 풀 수 있겠끔 보기를 저렇게 만들었던 것 같습니다. 그래도 a_n~c_n은 굉장히 쉽게 구하셨네요ㅎ 라고 쓰는 중에 dn까지 구하셨네요! 대단하십니다ㅎ