ebs 파이널 수리가 14번 ㄷ번 행렬좀 알려주세요...
영행렬이 아닌 행렬 A의 제곱은 0 .
ㄷ ) A=B제곱 을 만족하는 행렬 B는 존재하지 않는다.
해설에 B의 4제곱은 0 --> B의2제곱은 0 이라고 되어잇는데.....
어떻게 이렇게 생각하는거죠????
고수님들 도와주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인강 완전 대체로 독학서느낌? 같긴한데
-
사탐신규커리 0
보통 언제나옴?? 정법이랑 생윤 할 거 같음
-
자퇴하고 수능잘보길 기대하는게 아니라 기말 최대한 회복해서 아득바득 수시로...
-
뭔가 좀 아쉽네 지구1
-
걍 가면 몇 점 나옴?
-
아예 균형을 잃는 것도 하나의 방법일 수 있음. 균형을 잃고 거기서 추진력을 얻어서...
-
우울증 학교부적응 내신망함 자퇴욕구MAX 수능노베 이거 수능 뽀록나서 대학 잘가는게...
-
저들이 나와같은 인간이라는게 믿기지않는 압도적으로 똑똑하거나 성실하거나 아름답거나...
-
흐어
-
비문학 독해 연습 드가자...
-
가슴 한 켠에 증오 대신 문학을 담고 오늘의 끼니보다 내일의 희망을 노래하는 사람이 되고 싶어요
-
국어 공통 김승리 풀 커리 언매 유대종 수학 예체능이라 X 영어 션티 or 이명학...
-
남초 입시커뮤에 왜 여시충 아줌마가 와서 여대관련 이슈만 보이면 아득바득 달려와서...
-
앞으로 데이터사이언스, 데이터분석 관련 직군이 더욱 늘어날거라 미래에 배팅한다고...
-
수능에선 걍 잘풀고 답맞추면 장땡이지 수험생입장에서 강사가 출제자의도를 보여주니...
-
두 문제 틀렸는데 그럴수도 있음?
-
1. 의사 면허가 모든 것을 책임져주는 시대는 언젠간 반드시 사라질 것 같다....
-
경제하다와서보면얘는ㄹㅇ..
-
올해 지구 1
50 50 47인데 과외 경쟁력있음? 근데 이제 수능찍맞n개를 곁들인 ㅋㅋ
-
머가 더 지금시기에 와닿음?
-
ㅇㅈ 2
ㅇ
-
안녕하세요 사탐,과탐 둘 다 노베이고 어느것을 할까요? 미리 경험하신 분들께 조언...
-
님들이 저라면 자퇴함? 11
2-1까지 성적 1.64 근데 이번 중간고사 3.33 맞아서 총합 2점대 오픈함...
-
기출 푸는데 갑자기 미적기하 선택에서 그런거 없어지고 기하랑 다 들어있길래 뭐지...
-
신선하다는 의견을 많이 봤는데… 그냥 사설에서 나오는 유형 아님??
-
말 되나요ㅠㅠ
-
수학 잘하려면 2
수학 개념을 다 익히고 문제푸는거에요 아니면 개념 보고 바로 문제를 풀어서 개념을...
-
시험장에서 공통 은 잊어버렷는데 미적이 존나 어려웟어서
-
1컷 84~85면 내가 승
-
하늘이 예뻐 6
전 가끔 하늘을 보고 지려요
-
하ㅠ
-
아..적당히 해야지
-
님들 과외 어디서 구함 13
답답하네
-
반수하신분들…. 4
반수에 도움되는 조언 한마디씩만.. 부탁드립니다… 무휴반해야할수더 있고요…....
-
안녕하세요! 부산진학지원단 가채점 통계자료와 실채점 결과를 활용하여 '올해는 어떻게...
-
끊어야하는데 하.....
-
오늘은 6승 3패 막판 탑 케틀 후픽 박은 새끼야 다신 만나지말자
-
걍 일러 투척 7
-
문과면 메가패스 1
살 필요가 없지 않나요..?
-
김범준T 0
확통하는 문과 3등급이 듣기엔 어려운가요
-
고전시가 질문 5
제가 답을 고를때는 나열하는거같아서 기대감은 안드러났다고 생각했는데 답지에는...
-
27수능때 과탐 장례식이라 전례없는 핵폭탄과탐 내야되는데 국어까지 불로내긴 좀...
-
자러 갈까요 8
미적을 더 하고 싶기도 사실 한 페이지밖에 안 함뇨..
-
하아..
-
전전은 당연히안되는걸로알고 자전융힙이나 신소재화공쪽이요
-
이동준 강기원 0
예비고3이고 시대 둘다 신청 성공해서 갈수있는데 두분 병행하면 많이 빡셀까요?...
-
기본으로 4그릇 이상먹었고 아직도 카레 8그릇 먹은게 기억남 치킨 1마리 먹어도...
B가 0인경우는 당연히 안되구 0이 아닌경우 B의 네제곱이 0이니깐 B는 역행렬이엄슴니당
따라서 케일리헤밀턴으로 B의제곱은 (a+d)B가 되구 B의 네제곱이 영이니깐 a+d 는 0이 되서 B의 제곱이 0이됩니당
89년생 ㅡㅡ;;; 저랑 동갑이시네요. 힘내시라는 의미에서 ㅠㅠ
B^n = O 에서 B가 역행렬이 존재하면 양변에 B역행렬을 곱해나가면 결국 B= O 가 되므로 B가 역행렬이 존재한다는 가정에서 모순됩니다.
따라서 B는 역행렬이 존재하지 않고, 따라서 B의 ad-bc 값이 0이 됩니다. 여기서 행렬 B에 대해 케일리 해밀턴 정리를 쓰면, B^2 - (a+d) B + (ad - bc)E = O 에서 ad-bc=0이므로
B^2 = (a+d)B 가 나오고, 양변에 B를 곱하면 B^3= (a+d)B^2 = (a+d)^2 B 따라서 B^n = (a+d)^(n-1) B
B^n = (a+d)^(n-1) B = O 에서, a+d= 0 이거나 B가 영행렬이라는 결론을 내릴 수 있는데, ① a+d가 0 일 때 B^2 =O ② B=O
이라는 결론이 나옵니다. 어쨌거나 B^ n = O 이면 B^2 = O 은 성립합니다. 이는 필요충분조건입니다.
고로 A = B^2 에서 A^2 = B^4 = O 인데 이는 B^4 = O 은 곧 B^2 = O 이므로 A^2 = B^4 = B^2 = O 인데 A=B^2 이라 했으므로 A= O 이라는 결론이 나옵니다.
그런데, 영행렬이 아닌 A라고 했으므로 존재하지 않습니다.
두분다 ㄳㄳ합니다!!....89생 화이팅 ㅠㅜ