확률질문 ( 초고난이도 )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 미친듯이 뛰었으면 바다볼 수 있었을거 같기도 하고.. 6
지하철 시간 보니까..
-
수능 영어는 2등급 나왔고 토익은 700 넘기만 하면 되는데 어느정도일지 모르겠네요
-
선택과목 응시자 비율
-
본인 특정할 수 있는 내용 다 까고 바로 유튜브 방송 on 한 다음에 고소협박...
-
고대교과우수까지 먹어버리네 인생쓰다 4.1이라 울었다 진짜 ㅎ
-
로입입니다.
-
맞팔 6
ㄱㄱ
-
피방가려다 그런 눈으로 어딜 가냐면서 통제당함
-
보면서 진짜 개쪼갬 유튜브인줄
-
구라져?
-
인생 개같네 진짜 하 근데 생각해보니까 난 그야 다닌 적이 없으니까
-
근데 이제 미적고자를 곁들인..
-
놀라운 사실 5
저는 오타쿠가 아니랍니다
-
레츠고 부산 6
특실 플렉스
-
봐볼까.. 근데 미사카 미코토보단 인덱스가 좋던데..
-
이거풀면저도적백이되는거맞죠?
-
사탐런을 하라는게 무슨말인지 수능이 끝나고 나서야 이해했습니다
-
ㄲㅂ
-
ㅇㅅㅇ?
-
안주면나울꺼임
-
예년보다 덜돌것같음
-
이게 과목 자체에 특성인 것도 있지만 공통에서 쓸 수 있는 시간이 너무 많이 차이남
-
그것은 바로 야성미의 송도캠퍼스 고대생들(특히남자)는 연대 국제캠퍼스에서 벌어지는...
-
이유없는 호의 1
오오타니선생님의 만다라트 계획표에서 영감을 얻어서 요즘 많이 베푸는중
-
어제 히든페이스 보러 갔는데 현우진 시발점 광고 나오더라 1
뭐지? 극장에 있는 성인들이 2022 개정 교육과정 수능을 보게 하려는 현우진의 빅피처인가
-
좀 시간이 많이 남긴 했지만, 기말 끝나고, 생기부 나오면 입시 상담 받으러...
-
성적표 받고나서?
-
음주고대 알중경영이 맞다 살면서 그렇게 술잘마시는새기들은 처음봤다 배도안부르나...
-
심찬우쌤 장단점 뭐뭐가 있나요?
-
30만덕만들고싶다
-
2026뉴런…들을까 고민 중 ㄹㅇㅋㅋㅋ 자기 입으로 ‘궁극의 뉴런 ’ㅇㅈㄹ하는데 이걸 어케참노
-
1컷 88이면 3
92점은 백분위 몇임? 97?
-
[칼럼]★올수능 법지문이 "법해석(반대,확대)"문제였다는걸 알고 푼학생이 몇이나 될까요? (기출-EBS 어디서 직접 연계되었을까요) 6
예비고3들이 볼거라고 생각되어 바쁜가운데 컴을 켰습니다. 그동안 현강에서도 계속...
-
초딩들 욕 왤케많이함
-
님들도 그럼? 물론 5~6년전 의사는 기억 안남
-
ebs 채점자기준으로는 작수보다 평균 낮네요 표준편차는 2점 높긴하지만.... 만표...
-
노베이스 수능 0
공부를 내려놓은 .. 초등학교 4학년때 분수를 내려놓은 사람입니다 나이가 드니까...
-
국어는 3,4인데 피램으로 시작하려하는데 독서 말고 문학이 필요할것 같음. 문학...
-
사리가 폭발하고 히틀러가 된 뒤 싸우는 가면라이더
-
로시데레 8
오늘 밤새면서 볼까.... 꼭 보고싶음
-
05여 언미화생 25 6평 22231 25 9평 21231 25 수능 33213...
-
호떡줄 개길어 7
으어어어 제발 5분내로 나와줘..ㅠㅠ
-
뭐가 나을까 고시 생각중임
-
공1 미2 가 1이 될지 안될지 아무도 모른다는거임?
-
그리고 서울대 연건캠에 지원해서 분교 SKY 뱃지를 만들어 봅시다.
-
아.
이거 그 피자먹는문제랑 유사유형같은데
문제가 없네여...
아 새로고침 하니까 뜨네요 큐ㅠ
4/7 아닌가요?
11아닌가여 2명잡아주고 어거지로 품 ㅠㅠ
답이뭔가요?ㅋ
이거 그 당첨자 한명이 뽑는순서대로 분류하면 되요
첫번째로 뽑을경우, 2번째로,... 이하생략 이런식으로 풀면 답나오는데
계산이 그지같아서 안풀래요 ㅋㅋ
전 답이 다르게 나오네요 윗분들과 ㅠ
이거 여상진인데 미친문제임 수능에 절대안나오니까 풀지마셈 ㅋㅋ확률의 개념 제대로 모르면 절대 못품
답이 뭐에요?
답이 뭔가요?ㅋ
이거 고1 때 선행하면서 본 기억 나는데... 예전에 나온 문제 아닌가요?
정답 11 아닌가요?>?
당첨자 없는경우: 24/63
당첨자 1명인 경우: 36/63 = 4/7
당첨자 2명인 경우: 3 /63
이게 왜 미친문제죠 풀이도 깔끔하게나오는데
11임 XX / XO / XO / OO / OO 라고 두고, 1번부터 차례로 뽑을 확률 쭉 곱하고
XO부분은 OX될 수 있으니까 4 곱해준다음
XX / OO / XO / XO / OO 이렇게 순서 섞일 수 있으니까
5*4C2 더 곱하세요
4/7 입니다ㅋㅋ
제풀이좀 봐주세요;;
빨간 공을 배분하는 경우의 수는,
1. 두 사람이 각각 2개를 배분 받는 경우(당첨자 총 2명)
2. 한사람이 2개, 나머지는 두 사람이 각각 1개씩 배분 받는 경우(당첨자 총 1명)
3. 네사람이 각각 1개씩 배분 받는 경우(당첨자 총 0명)
이렇게 케이스를 나누어 각각 계산해보면,
1. 5명 중에 당첨자 2사람을 뽑는 경우의 수 5C2 = 10
2. 5명 중에 당첨자 1명을 선택하고 나머지 4명 중 빨간공 1개를 받는 2명을 고르는 경우의 수 5C1 x 4C2 = 30
3. 5명 중에 빨간공을 1개씩 받는 4명을 고르는 경우의수 5C4 = 5
따라서 당첨자가 1명일 확률은 30/10+30+5 = 30/45 = 2/3이므로 a+b = 5
----------------------------------------------------------------------------------------------------------------------
제가 계산한 전체 경우의 수 10C4를 논리적으로 접근하면 다음과 같습니다.
(제가 이렇게 접근했다는 것이 아니라 참을 검증하는 과정이라고 보시면 되겠습니다.)
우리는 공 10개를 일렬로 5묶음으로 배열한 전체 경우의 수를 먼저 상상합니다.
(1,2) (3,4) (5,6) (7,8) (9,10)
이 때, 전체 경우의 수는 {10C2X8C2X6C2X4C2X2C2}X2^5=113400X32 라고 볼수 있죠.
쉽게 생각하자면 5사람이 각각 10개의 자리 중 2개로 된 한 묶음을 선택한 후 각각
자기가 뽑은 공을 놓을 때 좌우를 바꾸는 2가지를 고려한 것이라고 보시면 됩니다.
이렇게 해서 배열된 (1,2) (3,4) (5,6) (7,8) (9,10) 의 임의의 배열 중에서
흰공 6개가 서로 자리를 바꾼 6!을 하나로 보고, 빨간공 4개가 서로 자리를 바꾼 4!를 하나로
보면 113400X32 나누기 4!X6! 이 되죠. 이 답이 바로 10C4 즉 210입니다.
이것은 결국 쉽게 보자면 원래 주어진 10개의 자리 중 빨간 공이 놓을 자리 4군데가 바뀌는
경우의 수를 각각 다른 것으로 보는 것입니다. (이 경우 분모의 210가지 각각의 경우는 애초에
생기는 모든 임의의 배열인 113400X32 가지 중 각각 4!X6! 가지의 경우를 하나로 생각하여 축약된 것이므로 같은 빈도를 가지는 것은 자명합니다.)
----------------------------------------------------------------------------------------------------------------------
그리고 애초에 제가 처음 보낸 답변 중 오답에 분모를 45가지로 계산한 경우가 있다고 했는데
이 사고는 다음과 같습니다.
당첨이 없는 경우 : 4명이 빨간공 1개씩 받는 경우 5C4=5
당첨이 1명 있는 경우 : 1명이 2개, 2명이 1개씩..5*4C2=30
당첨이 2명 있는 경우 : 2명이 2개씩 5C2=10
..30/45=2/3...
이 때 분모를 5+30+10=45로 계산하면 오답이 되는 이유는 저 45가지 모두 동등한 빈도로 고려되지 않기 때문입니다. 이렇게 되는 가장 큰 이유는 흰공과 빨간공의 개수가 다르기 때문입니다. 만약 흰공도 5개 빨간공도 5개라면 위의 풀이가 맞을 겁니다...
실제 예를 들어보자면 A,B,C,D 4명이 각각 빨간공 1개, 흰공 1개를 가지고 E가 흰공만 2개 가지게 되는 경우는 당첨이 없는 5가지 중 1가지이기 때문에 1/45가 되어야 하겠지만 실제 경우의 수를 계산해보면 전체 경우의 수는 113400 중에서
(6C1X4C1)X(5C1X3C1)X(4C1X2C1)X(3C1X1C1)X2C2=8640 가지이기 때문에 1/45가
나오지 않습니다.
(A가 흰1빨1)X(B가 흰1빨1)X(C가 흰1빨1)X(D가 흰1빨1)X(E가 흰2) 이라고 보시면됩니다.
----------------------------------------------------------------------------------------------------------------------
개인적으로 쪽지로 질문받은 김에 여기도 풀이를 올립니다.
일단 답은 4/7이 맞습니다.
일단 경우의 수로 분모 및 분자를 사고합시다.
현재 주어진 공 10개를 2개씩 5묶음으로 나누게 되므로,
(1,2) / (3,4) / (5,6) / (7,8) / (9,10)
이렇게 생각했을 때, 분모의 경우의 수는 빨간공 4개를 임의의 4곳에
넣는 방법입니다. 따라서 10C4=210 으로 둡니다.
이 때, 우리가 원하는 사건은 빨간 공 2개를 다섯 개 중 한 묶음에 넣고
나머지 2개를 남은 네 묶음 중 두 곳에 이웃하지 않게 넣으면 됩니다.
계산해보면 5C1×(8C2 - 4)=120 이 됩니다.
(5묶음 중 빨간 공 2개를 넣는 한 묶음을 선택하는 방법)×(남은 8 곳중 임의로 두곳에 넣는 방법 - 어느 한 묶음에 두개가 동시에 들어가는 경우) 입니다.
따라서 120/210=4/7이 되어 답이 4+7=11이 됩니다.
답글에 보니 2/3으로 계산한 분이 있던데, 이는 수학적 확률에서 모든 근원사건이 같은 정도로
기대되어야 한다는 정의에 어긋나는 상태로 계산한 결과이므로 오답입니다.
(즉, 전체 경우의 45가지가 모두 같은 확률을 가지지 않는 다는 뜻입니다.)
잘 이해가 안간다면 먼저 수학적 확률의 정의를 다시 찾아서 공부해보시고, 이해가 안가는
부분을 질문해주세요 ^^ (아 그리고 정확히 얘기한다면 최근 수능 시험의 기조상 확률문제가
그리 어렵지 않기 때문에 나올 가능성이 낮다는 것이지, 교과과정 외의 문제는 아니므로 수능에
나올 수 있는 문제입니다.)
심각한 오류가 있네요. 님말대로 빨간공 4개를 10개의 셀에 집어넣는 것이라 생각하면, 1,3,5,7과 2,4,6,8을 다르게 보는 것인데 이게 말이 됩니까?
맞는것가텐요 죄송함니다