[9.24] ★피니싱케치★
2010
2012
수능문제이다.
두 문제 모두 풀이 방법이 두개? 나오는데..
2010은 타원! 이렇게 생각하고 풀면 빠르게 풀리지만. 순수하게 공간으로만 풀 때 아..문제가 더욱 더 의미있게 다가오고.
2012는 이것도 이걸꺼야..하면서 예상하면 빠르게 풀리는데. 백지상태에서 하나하나 풀어가면 문제가 더 의미있는 것 같은데!
어떻게 생각하는가?
같이 고민해보자.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그런거지?
-
화2 질문 0
화2에서 꼭 암기해야하는거나 암기하면 문풀에서 수월한것들 있나요?
-
일단 낙지 점공기준 제 앞에 7명 맞춤
-
답인 1번이 대놓고 개소리인거같긴한데 4번이 약간 헷갈려서 정답률이 낮은걸까요?
-
ㅈㄱㄴ
-
수2는 전부 이어지는 내용이라 기억이 나는데 수1은 까먹은 부분이 좀 있네요.. ㅜ...
-
휴학에 참가한 의대생들 전원 사형집행 하기로 결정 25학번 수업은 무리없이 진행될 예정
-
검사했는데 결과는 안뜨고 다시하려면 다시하라그러고 옘병할
-
고시류는 탈락하면 진짜 낫띵인데 의대준비하다가 의대성적 안나오면 낫띵이 아니라...
-
망했어요 오늘은 외진때문에 넘어가지만 내일부터 문젠데
-
28수능부터 시행되는 통사통과로 어떻게 변별할지 너무 기대됨 1
개같이 기대된다
-
나도 작년에 못맞추긴했고 난 맞췄는데 올해 최저 충족률 어케 되려나... n수...
-
연고대 문과 가려면 사탐선택자는 연대로, 과탐선택자는 고대로 3
모일수밖에 없다라는 예측을 봤는데, 나름 일리가 있더군요. 일단 연고대 레벨의...
-
국어 잘한다고 생각했고 이때까진 망해도 백99는 떠왔는데 올수는 진짜...
-
피램 병행 가능한가요? 재수생임 현역 X
-
ㅈㄱㄴ
-
정승제쌤이 어제 롯데월드 간다는건 이미 예견된 일이었음뇨 개때잡 확통 2단원...
-
제가 국어 시간이 오래걸리는 이유가 이거 때문인거 같습니다. 0
예를 들어 8번 문제에서도 1번 선택지에서 "한성순보가 간행된 취지는 서양에...
-
인스타 내리다 떠서 봣는데 H2O의 약자가 뭔가요? 화학고수님 답변부탁드립니다...
-
우리의승리다
-
산속에 난 길이어서 ㄹㅇ 개무서웠음
-
전공탱이라 가야돼...
-
어릴때는 포뇨 아빠가 포뇨 괴롭히는거 때문에 겁나 싫었는데 지금 다시보니까 포뇨...
-
난 xx을 잘해->많이함 이게 무한 싸이클이 돌고 그러는듯 반대도 마찬가디 난 xx을 못해->안함
-
대성은 무조건 수학 1타가 한석원이었던거 같은데
-
난 햇빛만 존나나는데
-
28학년도부터는 정시 100프로로 대학 가는거 없어지죠? 3
내신 구리면 정시길도 막히는.... 그럼 자퇴생이랑 장수생들은 어떻게 되는거지?
-
아아 기대된다 2
나는 어느 대학을 갈것인가!! 어느 지방에서 캠퍼스라이프를 즐길것인가!! 킥킥킥킥킥킥킥
-
예쁘긴하다 햇빛에반사되면더예뻐짐
-
종강하고 클쓰보내고 바로 돌입할 것 식단 + 유산소 + 근력 이렇게 간드앗
-
국어 ㅠㅠㅠ
-
식메추 (식사 메뉴 추천)
-
올해 수능친 현역인데 국수영은 222 뜰것같은데 과탐 물1 지1이 4가 떠서 투과목...
-
본책값만 36000,34000이네 ㅋㅋㅋ워크북하고 확통까지 들으면 면 기본개념강좌에...
-
나만그냥잤지
-
으흐흐히흐히히 30
화1 죽어라 히흫히히히흐히
-
맛있게. 먹어라.
-
25학년도 의대 모집 정지 (new!) 한의학은 정말 과학적인 학문인가? 의대...
-
수1을 너무 못한다..
-
수능 끝난 지금도 여전히 이해 안 가는 유일한 문제 7
9평 국어 10번 ㅋㅋㅋ.. 틀린 애들은 국어 못하는거란 말 볼때마다 짜증났음 내가...
-
주로 쓰는 손이 좀 박살났는데 ㄱㅊ?
-
공스타 현역들 10
ㅋㅋㅋ 6,9모 엄청 화려한 애 비활타더니 아예 안오네
-
저는 봉사하는 마음으로 자원하겠습니다
-
커피는 먹다가 머리가 너무 아파서 이젠 안먹으려고요… 너어무 졸린데 다들 잠 어떻게...
-
이제서야 구렁텅이에서 벗어난다
-
ㅅㅂ
-
난 엄마 보고 밥이나 해! 라고 큰 소리로 외침
-
얼마나 잘봐야함? 작년 입결로따지면 의대제외하고 서울대수리과학부가 가장 높던데
먼저 10문제 같은경우 기하학적인 접근이 가능하지만 대수적인 풀이도 충분히 가능해요 근데 인강강사 해설강의를 들어보면 거의 대부분 타원과 접선과의 관계로 풀죠
실제로 대수적인 접근으로 구의방정식과 평면의 방정식의 교선의 방정식을 얻으면 x^2 + y^2/cos^2 = 1 으로 식을 얻은뒤
타원과 접선의 관계를 이용해서 풀수도 있고, 아니면 대수적으로 코시슈바르츠 부등식으로 풀수도 있죠
아니면 여기서 이때 cos값은 상수취급이므로 t라 놓고 x와 y를 cos과 tsin값으로 치환하여 x+3y <=2식에 대입하여 삼각치환으로도 풀수 있고요
또 x = X, y = cosY로 치환해서 원과 또다른 접선과의 관계로도 풀수도 있구요
이때 역시 대수적으로 코시슈바르츠 부등식 혹은 접선의 방정식, 벡터의 내적, 역시 마찬가지로 삼각치환이 가능하죠
기하적,대수적으로 풀수있는 10문제와 달리 12문제는 엄밀하게 풀려면 반드시 대수적으로 풀어야 했어요
물론 저 문제를 세 평면이 공통된 교선을 갖고있다고 가정하여 단면화 시켜서 푸는 방법이 꽤나 많았고 많은 학생들이 시험장에서
그렇게 풀었을거 가타요..ㅋ 저도 처음풀땐 그렇게 풀었고요 물론 그렇게 풀어도 답은 맞게 나와요
근데 완벽히 논리적으로 풀기위해선 법선벡터 개념을 이용해서 결국 이문제도 10문제와 같이 부등식을 이용하여 푸는 과정이 나오는데
이때 원과 같은 식과 어떤 선형적인 식의 최댓값을 묻는 문제로 회귀되는거 같은데 결국 10문제와 완전 똑같아지죠
확인을 해보면 저 삼각형 평면의 방향벡터를 (1,a,b)라 두면 (x방향의 성분이 0이면 내적하여 0이 나오기때문에 0이 될수 없으므로 1로 둘수 있어요)
결국 a^2+b^2 =3 에서 l1-2a+2bl의 최댓값을 묻게 되는데 10과 달리 이번엔 선형식에 절댓값이 붙은 차이점이 있죠
여기서 마찬가지로 삼각치환을 활용하면 깔끔하게 풀리고 아니면 = k로 두고 두 직선의 접선의 방정식을 활용해서 어떨때 k가 최대가 되는지 확인해보는 방법
아니면 절댓값이 최대가 되는부분을 찾으려면 0으로 부터 제일 먼곳을 찾는것에 착안해서 우선 -2a+2b는 앞에 대칭적 성질에 의해
최댓값과 최솟값의 크기는 같을것이므로 결국 앞에 +1에 의해서 양의 최댓값을 가질때가 저 식이 최대가 될것이라고 추론
따라서, -2a+2b의 양의 최댓값을 찾으면(이것도 코시나 접선 아니면 벡터의 내적도 가능) 답이 나오게 되네요
헐 그냥 생각 줄줄 썻는데 너무 길게 쓴듯
헐 대박
폭풍감동 후 정독 전에 우선 립부터 달았쑴. ㅋㅋ