삼각함수 값 실수없이 구하기 (노베용, 문과용)
삼각함수 값 계산 실수가 자주나는 문과 n수생, 반수생
을 위해 준비했다.
팔로우, 좋아요 한번만 박아주면 안되냐?
진짜 은근 힘이 많이 된다.
저번 노베용, 문과용 칼럼은 '왜 라디안을 쓰는가?'였다.
아직 보지 못했다면 https://orbi.kr/00028479675/ 을 보고 오도록 하자.
삼각함수를 처음 배우고 라디안식 표현(호도법)에 약간 익숙해지면
위와 같은 값을 구하는 데에는 전혀 문제가 없을 것이다.
왜?
에서는 아래와 같이 삼각형 그리고 사인, 콧인, 탄젠트 값을 구하면 된다
그러면 주로 실수는 어디서 나올까?
바로 일 때이다. 어떻게 하면 실수를 줄일 수 있을까?
먼저 아래 그림을 머릿속에 넣도록 하자.
'얼싸안고', '올싸탄코' 등등으로 외우면 된다.
이 그림의 의미는 각 사분면 위에
사인, 코사인, 탄젠트 중 양이 되는 것을 적어둔 것이다.
1사분면에서는 사인, 코사인, 탄젠트 모두가
2사분면에서는 사인만
3사분면에서는 탄젠트만
4사분면에서는 코사인만
부호가 양이 된다.
두 번째로 알아 두어야 할 것은 x축에
수선의 발을 내려 삼각형을 만든 후 삼각비를 구하는 것이다.
예를 들어
의 값을 구한다고 하자.
동경을 좌표평면 위에 표시하면 아래와 같다.
여기에서 x축에 수선의 발을 내려서 삼각형을 만들면.....
위와 같다. 파란 삼각형에서 코사인 값을 구하면 1/2이다.
하지만!
2pi/3은 2사분면 위의 동경이므로 '사인 값'만 양수이다.
코사인 값은 음수이므로 아까 구한 1/2에다가 마이너스(-)만 붙여주자.
체화를 위해 이번엔
를 같은 방법으로 구해보자.
동경을 좌표평면 위에 표시하면 아래와 같다.
여기에서 x축에 수선의 발을 내려서 삼각형을 만들면.....
위와 같다. 파란 삼각형에서 탄젠트 값을 구하면 1/루트3이다.
7pi/6은 3사분면 위의 동경이므로 '탄젠트 값'만 양수이다.
탄젠트 값은 음수이므로 아까 구한 1/루트 3에다가 플러스(+)만 붙여주자.
다음번에 올릴 건 '노베를 위한 칼럼'은 '삼각함수 호환'이다.
위 표를 무작정 외우는 경우도 많고
세타가 예각뿐만 아니라
모든 각에서 성립한다는 걸 모르는 경우가 꽤 있다.
이를 외울 필요 없이, 실수 없이 다루는 방법을 소개하도록 하겠다.
'얼싸탄코'만 제대로 알면 쉬울거다.
이상이다. 읽어줘서 감사하다.
팔로우, 좋아요 는 큰 힘이 된다.
3줄 요약
1. x축에 수선을 내려 삼각형을 만든다
2. 만든 삼각형에서 필요한 사인, 코사인, 탄젠트 값을 구한다.
3. 올싸탄코로 부호를 정한다.
2020 칼럼 모음
왜 라디안을 쓸까? (노베용): https://orbi.kr/00028479675/
사인법칙, 코사인법칙 활용: https://orbi.kr/00028624520/
기출 파급 미적 chapter 3 그래프 그리기: https://orbi.kr/00028230748/
기출 파급 확통 chapter 5 전체: https://orbi.kr/00028507131/
기출 파급 확통 chapter 2 전체: https://orbi.kr/00028063419/
기출 파급 확통 출고!: https://atom.ac/books/7241
아 포부 님이 '기출 파급 교재 지원 이벤트'를 하신다고 한다.
https://orbi.kr/00028877692 에서 교재 타가도록 하자.
나중엔 확통 뿐만 아니라 수1, 수2, 미적분도 출간되면 이벤트 상품에 포함된다.
0 XDK (+100)
-
100
-
통합과학에 ㅈㄴ 진심이네
-
25수능 미적분 4점 문항 마지막 자료입니다. 1D2K는 공통을 포함해서 계속...
-
치피치피단 입성 2
성대합격으로 성공
-
기억에 남지 않는다 우리는 고급수학 수업 때 입실론 델타 입실론 엔하고 심지어 수2...
-
처음 알앗어
-
무한 고민
-
인기가 너무 많은 지역이다
-
얼음
-
음주하는중 1
헤헤
-
입실론 델타법 말고 13
라그랑주 승수법도 꽤 다양한 곳에서 쓰이는듯...
-
학교 3일 가는거 빼면 59일이긴한데 학교에서 알빠노하고 공부하면 되서 상관없음...
-
나도하고싶다
-
점수공개 보니까 추합 끝자락이거나 불합일 것 같네요 이미 재수했고 이제는 대학...
-
최근 4개년 평가원 기출을 분석하여 최대한 평가원 그림과 똑같아 보이도록...
-
와 나 다시 살아났다 13
3주 만에 식욕이랑 성욕 돌아옴 휴 곧 죽는 줄 알았잖아
-
걍 성대 다닐까라는 충동이 잠깐 밀려왔음....
-
3떨 0
점공까니까 가능성있는데 발표전까지 공부해야될까요..
-
싼 곳으로..
-
님들 몇살임요? 12
다들 몇살임??
-
중강경외시 5
음?
-
수학 6등급 재종반다니는데 국영수업이랑 수업습관까진괜춘은데 수학이좀별로라 그시간에...
-
입실론델타 나도 배워야 하는걸꺼같은 한숨나오는 예감이
-
도다인테 우와이?
-
이거 뭐임....??? 17
왜 맨날 리즈 갱신함...???
-
나머지는 허수들인가요? 아님 그녕 귀찮아서 점공 안하는 실수?
-
근데 그게 뭐임?
-
화학2 단과 0
강준호쌤 대기순번 30번인데 가망있나요
-
저는 이제 개념 60%정도 돌렸습니다!! 기말 끝나자마자 12월 중순부터 시작했고...
-
ㄹㅇ좆같네 ㅋㅋㅋ
-
현기증 나는 활주로의 최후의 절정에서 흰나비는 돌진의 방향을 잊어버리고 피 묻은...
-
저 무협지 좋아하는데 이거 실제로 되는 기술임??
-
앱실론델타논법 35
공머생들 해두면 좋음 지금 첨에 컬쳐쇼크임
-
친해져요 그러니까 친해지다 = 맞팔
-
어차피 선택에는 후회가 따를 수밖에 없고 태고의 옛적 통합사회 교과서도 비용과...
-
전 편 -...
-
작년보다 추합이 많이 덜 돌거같아서 그게 걱정임 하………
-
현실에 삼수 많음? 12
서울대는 꽤될거고 연고나 서성한도 삼수생 많은가요? 2떨하면 삼반수할거같은데 내가...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
친구 중에 세종대 23학번 있음 ㅅㅂ.............. 나재수할때그친구가...
-
컨디션 슬슬 돌아온다
-
보통 인강 강사들이 많은 기출강의들을 올리시는데 그런 강의 듣고 교재만 풀어도...
-
전 수능 이후론 엄마가 항상 퇴근하고 국에다 반찬이랑 해서 차려주심
-
내신 망한 건 아니고 챙길 건데 가고 싶은 과가 정시 위주라 조언 좀 지금 국어는...
-
2025 전과목 2024 전과목 2023 전과목 이런식으로 된 문제집은 따로 안파나??
-
잇올에서 연애 6
친구가 잇올에서 여친 99퍼 확률로 사귈 것 같다는데 가능하긴 한 건가요?? 말...
-
아무래도 좀 늦게 보내서
-
있나요?
-
Another class 화학 II 2026 출시 예정 7
안녕하세요. Another class 화학 II 저자 이병진입니다. 먼저 그동안...
-
고경제쓸걸 1
651점까지 뚫린다네...
-
다들 인증 하나요?
파급!
파급님 사인코사인 자료 잘 봤어요
실수없이 구하면 허수로 구하는 건가요? 역시천재
ㄹㅇ 이거 계산실수 엄청 많이나옴..ㅜㅜ
다음 칼럼도 기대하겠습니다
제가 가장 실수가 많은 부분이라 체화 열심히 할게요 ㅎㅎ
정말 고마워요
파급추!
.....파급군....이러면 너무...고마워..서...눈물이....
아 이제 문과도 호도법 배우겠구나
얼싸안코 저거 빡t가 엄청 뭐라하셨는데ㅋㅋㅋ
나보다 잘하면 다 형이지.. 형 고마워요 언능 파급 볼수있는 실력됬으면 좋겠다 ㄸㄹㄹ 6월까지 실력키운다 후
표에 cot있는데
오타인가요?
아뇨. 저 표에는 딱히 오타 없습니다
삼각함수 배우고있는 고2인데
cot가 뭐에요? 이런건 아직 본 적 없어서요
아 ㅋㅋㅋㅋ cot는 1/tan 입니다. 정식적으로는 아마 미적분에서 나올거예요 효
감사합니다
각 변환 칼럼 저도 쓰고있는중인데
1. 연쇄변환법
2. 예각가정법
3. 그래프 도시법
이렇게 쓰면 내용이 많이 겹칠까요?
오 아닙니다 센세. 칼럼이 더 늘어나면 좋죠 ㅎㅎ
전 아마 2. 예각 가정법 위주로만 설명할 듯 합니다.
1. 연쇄변환법 3. 그래프 도시법 궁금하네요 ㅎㅎ
Good
그냥 닥치고 500문제만 풀면 문과노배도 품
그이상은 재능?
그딴건 개소리지
형 올해 기하도 나와? 혹시 나오면 은제 나와??
기하는 하반기에 나올 듯 합니다
평행이동, 대칭이동도 한번만 정리해주세요..
선형대수라도 봐야되나 ㅠㅠ
이게 생각보다 복잡하게 내면 어렵더라구요
오 이것도 좋죠 꼭 다루도록 하겠읍니다
본인 ㅈ반고 수학쌤이 올산타클로스 ㅇㅈㄹ하면서 가르침ㅋㅋㅋㅋㅋ
파급 미적분 기다리고 있겠읍니당
수1 파급은 언제 나오나여ㅡ
이와 같은 게시글 내용+실전 개념+기출이 합쳐져서 6평 전후(5월 말~6월 초)에 나옵니다. 살짝 늦지만 수1에서 엄청난 킬러가 나오진 않기에 걱정마세요
사코탄 15도도 외우는거 어떰? 이미아는데 100중 1번 묻길래
딱히 외울 필요는 없을거 같아요
실수 없다길래
라그랑주 나오는줄...
삼각함수 호환 칼럼은 아직 안올라온건가요? ㅜㅜ
ㅠㅠ 잊고 있어서 죄송합니다. 곧 올리도록 하겠습니다.