왜 라디안을 쓸까? (문과, 노베용)
이번 교육과정에서는 저번 교육과정과 달리
이과뿐만 아니라 문과도 삼각함수에 대해 배운다.
삼각함수, 호도법(라디안)을 처음 배우는 문과는
'라디안을 대체 왜 쓰는가?'
에 대한 질문을 한다.
왜냐면 초등학교 때부터 지금까지 멀쩡히
60도, 30도 등등 '도' 단위를 잘 써왔기 때문이다.
또한 라디안으로 인해 흔히들 아래와 같이
생각하며 혼란스러워 한다.
처음에 라디안에 익숙해지기 위해
를 무작정 외울 것이다.
하지만 우리(문과)는 pi를 처음 보는건 아니다.
초등학교 때 원둘레, 원의 넓이를 하며 접했을 것이다.
이때 아는 pi는 다음과 같다.
여기서 많이들 의문이 드는 옯붕이들이 있을 것이다.
"그러면.....
인 것입니까? 아니면 삼각함수에서 쓰이는 pi랑
초등학교 때 배운 무리수 pi랑 다른건가?"
결론부터 말하면
이 맞고
인 것이다.
정리하면
이라는 것이다.
위 의문은 해결되었는가?
이제 '왜 라디안을 쓰는지 썰을 풀어보겠다.'
2000년 전 고대 이집트로 가보자. 피자의 둘레를 재는 상황이다.
둘레를 대략적으로 어케 편하게 잴까?
이때 180등분 되어 있는 각도기가 있었겠는가?
당연히 없다. 이 시대 기술로 어케 정확하게 만들겠는가
피자의 반지름 길이의 밧줄로
둘레를 대략적으로 재보는 건 어떨까?
이런식으로 말이다.
이때 중심각을 '1'이라고 해보는건 어떨까?
호의 길이가 반지름 길이의 '1배'이니까 직관적으로 와닿는다.
이런식으로 하면 중심각이 'theta(세타)'이니
위 그림의 호의 길이는 r의 'theta(세타)배'로 쉽게 표현할 수 있다.
그렇다.
이건 원의 둘레를 표현하는 '라디안식 공식'이 아니다.
라디안이 이런식으로 '정의'된 것이다.
'1 라디안'은
편하게 '호의 길이=반지름 길이'가 될 때의
중심각의 크기라고 보면 된다. 이걸 편하게 단위로 설정한거다.
오히려 '라디안' 시스템이 '도' 시스템보다 직관적이지 않은가?
원 둘레는 알다시피 이다.
우리는 "원의 둘레는 원의 반지름의 '2pi배'구나!"
라고 볼 수 있다.
이래서 우리가 편의에 의해
이렇게 외우고 다니는 것이다.
재밌었는가? 고맙다 사실 이해시키려고 지어낸 이야기다.
고대 이집트에 피자라니 말이 되는가 ㅋㅋㅋㅋㅋ
그래도 수학적으로 라디안이 저렇게 정의되는건 맞다!
호도법을 쓰면 원 둘레 표현하기 넘 좋으니 미워하지말고 에용하자.
이상이다. 호도법을 아예 처음 배우는 학생에게 도움이 되었음 한다.
세 줄 요약
1.
2. 좋아요
3. 팔로우
2020 칼럼 모음
기출 파급 미적 chapter 3 그래프 그리기: https://orbi.kr/00028230748/
기출 파급 확통 chapter 2 전체: https://orbi.kr/00028063419/
기출 파급 확통 예판: https://atom.ac/books/7241
(추후 4월쯤 수1, 수2, 미적분, 확통 시리즈 완성!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전 수능 이후론 엄마가 항상 퇴근하고 국에다 반찬이랑 해서 차려주심
-
진짜모름
-
내신 망한 건 아니고 챙길 건데 가고 싶은 과가 정시 위주라 조언 좀 지금 국어는...
-
2025 전과목 2024 전과목 2023 전과목 이런식으로 된 문제집은 따로 안파나??
-
안가람t 진도 0
안가람T 공통반에서 지금 수1수2 기출 풀어주시는건가요?
-
잇올에서 연애 5
친구가 여친 99퍼 확률로 사귈 것 같다는데 가능하긴 한 건가요 말 거는 것도 힘들지 않나…?
-
내가 이래서 백만 덕을 찍어본 건가
-
아무래도 좀 늦게 보내서
-
있나요?
-
Another class 화학 II 2026 출시 예정 6
안녕하세요. Another class 화학 II 저자 이병진입니다. 먼저 그동안...
-
고경제쓸걸 1
651점까지 뚫린다네...
-
다들 인증 하나요?
-
∃원인 : 어떤 원인이 존재한다 ∀결과 : 모든 결과에 대해 ∀원인 : 모든 원인에...
-
안되는데
-
이거 왜 못먹음?
-
ㅇㅇ??
-
오르비 투데이 100 훌쩍 넘는 사람들은 뭐임뇨? 13
많이 한거 같은데 100도 안되는디
-
연세대 전전 2
702점인데 가능할까요.. 점공보니까 등수 계속 밀려가지고 불안하네요
-
단 한 사람이 망쳐버렸다 어쩌면 여러명이 될 수도 점공좀 빨리 하라고...
-
강대 씨발 1
퀀텀 소음 관리 0.00001도 안함 이렇게 할꺼면 돈은 왜 받음?
-
오늘 한 공부 1
2025.01.07 D-310 또 까먹고 플래너 안씀 내일부턴 쓴다 오늘 한 공부...
-
논란 조장하려는게아니고 가끔보면 한의학으로 암치료가 된다는 주장이 있던데 이론상...
-
분명히 뻘글밖에 안 쓰는데 그렇게 재밌거나 흡입력 있게 쓸 수가 있나 싶음 사람은...
-
ㅁㅌㅊ?
-
인강들을때 다 이어폰 끼는데
-
뭐라는거냐
-
가족일 때문에 오랜만에 오르비 들어왔는데 생각해보니 오르비인간들에게 도움만...
-
기하햄 계시나 2
올해 연논 2차 2번 3번 풀어볼 수 있나요? 이거 난이도가 어느정돈지 좀 궁금함
-
국2411 백99 수2509 백99 영 2509 원점98 한지 2511 백100...
-
24수능 본 사람이고 이번에 26수능 다시 볼 예정입니다 공대/자연대 계열로...
-
ㅇㅅㅇ
-
혼자 타이레놀사러 편의점가는중.
-
500등 후반까진 넉넉히 붙나요? 다군 위에 뭐 많이 생겨서 불안한데.. 6칸떨이...
-
질문 받읒니다 24
오늘은 시험봣으니깐 쉴거임뇨
-
벡터 슬슬 쉽지 않아지는중.. 스블 확통 개강까진 해봐야겠다
-
경제 질문 5
마더텅 사서 개념 한 다음에 그 단원 기출 풀까요
-
친구가 어디가야되냐고 물어보는데 어디가 나은가요 친구 집이 용산구라 외대가 조금 더 가깝긴 할듯
-
하루에 200명씩 들어오네ㅋㅋㅋㅋㅋ매일보다가 멘탈 다털림 딱 750인데 실제로도 컷 걸칠거같은 느낌
-
내일부턴 진짜로 갓생 살거임
-
응시자 15만넘는데 만점자 80명 나온 시험임ㅋㅋㅋㅋ 높은확률로 그냥 30점대맞고 같이타죽었음
-
대원 한영이 같은 외고 취급 해줌
-
무물보 10
심심해서 한번 해볼게요
-
원장연 유래 6
ㅇㅇ
-
흠..
-
폭이 지원자수가 예상보다 몰리면서 경쟁률 높아지는거에요..?
-
징집병 모집 언제인지 아시는 분 계신가요
-
그냥 프사부터 약간 개소리에 어울리는 프사임
-
군대안가는법 4
의대에 가면 됨
-
주변에 170안넘는 애들이 없어서 모르겠네
-
전역하면 됨
파급 ! 파급! 파급!
파급! 파급!
역시 사장님. 다시한번 새겨듣겠읍니다
삼분의파이 육분의파이 자꾸 헷갈림ㅠㅠ
3분의면 60
6분의면 30
거꾸로간다고 외워봅시다
파이가 180이니까 6분의 파이는 6 3 18이니까 30도 3분의 파이는 3 6 18이니까 60도 이렇게하면 깔끔함
다 좋은데 움짤 배속좀 해주십쇼 형님
미쳐따 도라따
와 지렷읍니다
와 ㅋㅋㅋㅋ 진짜 좋은 글 잘 읽었습니다! 진짜 재밌고 쉽게 가르치시네요!!! 문과출신 아재도 잘 이해가 됩니다
추가로 저렇게 라디안으로 각을 표시함으로서 각을 "연속"적으로 표현가능하게 됐습니당. 원래 각도체계는 불연속적이였거든요. 그래서 저 라디안을 통해 삼각함수를 그래프상에 나타내고 극한과 미분까지 확장가능했죠
연속적인게 아니라 실수로써 표현가능해지고 좌표평면에 표현가능해진거 아닌가 기존 육십분법도 연속적임
생각해보니 이 말도 맞는 거 같네요. '도'라고 해서 딱 정수만 표현되는 건 아니니까요
한바퀴를 360개로 등분했을때의 각을 1도라고했으니 1도와 1도 사이각은 없으므로불연속아닌가용? 물론 1도보다 작은 분,초 단위가 있긴한데 결국 그 단위들도 인위적으로 등분한거니까 불연속적인게 맞지않나요?
처음부터 도의 정의는 360등분이므로 그 사이각 없음 -> 불연속
(분,초 도 사실상 같음)
라디안의 정의는 호/반지름 따라서 모든 각 표현가능 -> 연속
저는 이렇게 알고있었는데 아닌가여??
a 도 에서 a 가 왜 정수여야되는거죠?
도의 정의가 360등분이니까요
0.5도는 존재하지않죠
안타깝게도 본문보다 저는 이 설명이 더 직관적이네요.
애초에 라디안보다 일상적으로 이산으로 단위나누는것처럼 360도가 더 직관적이었는데
여기서 연속적이기위해 라디안 도입했다가 더 와닿네요
그냥 반지름으로 나타내려고 했다 하면 반지름이 원의 '대표값'이니 그걸로 표현하려 했구나 까지지 뭔가 와닿진않았음.
용도와 차이를 아니 더 와닿음.
그쵸 ㅎㅎ 저도 저거 알아내고 공부할 때 답답한게 없어져서 좋았어여
밑에 그림 아주 그냥 한방이네요
고대 이집트에 피자를 보고서 이질감을 못느낀거 보면 이젠 자야겠네요
ㅋㅋㅋㅋㅋ
파급 수1은 아직인가요? ㅠㅠ
하아 요거 나중에 공지 한번 드리겠습니다.
수1이 시리즈 중 제일 늦게 나오지 않을까 생각합니다.
그래도 6평 전쯤엔 나올거예요. 내용이 그리 어렵지 않고 이렇게 칼럼으로 종종 올릴테니 넘 걱정마싲쇼
와 대박
그냥 쉽게 각도를 길이의 형태로 표현 한다는게 큰 의미가 있는것 같아영~^^
2000년전 고대 이집트의 콤비네이션 피자의 둘레를 재는 상황 ㅋㅋ
옹...감사합니다 좀 더 명확해진 느낌이네요
한석원 GOD
파급님! 아래 움짤은 직접 만드신 건가요?
저런 움짤은 어떤 툴을 사용해서 만드는지 알 수 있을까요?
아 아래 움짤은 위키피디아에서 사져온것입니다. 출처 넣는걸 깜빡했네요 ㅠㅠ